ترغب بنشر مسار تعليمي؟ اضغط هنا

What Powers Lyman alpha Blobs?

482   0   0.0 ( 0 )
 نشر من قبل Yiping Ao
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lyman alpha blobs (LABs) are spatially extended lyman alpha nebulae seen at high redshift. The origin of Lyman alpha emission in the LABs is still unclear and under debate. To study their heating mechanism(s), we present Australia Telescope Compact Array (ATCA) observations of the 20 cm radio emission and Herschel PACS and SPIRE measurements of the far-infrared (FIR) emission towards the four LABs in the protocluster J2143-4423 at z=2.38. Among the four LABs, B6 and B7 are detected in the radio with fluxes of 67+/-17 microJy and 77+/-16 microJy, respectively, and B5 is marginally detected at 3 sigma (51+/-16 microJy). For all detected sources, their radio positions are consistent with the central positions of the LABs. B6 and B7 are obviously also detected in the FIR. By fitting the data with different templates, we obtained redshifts of 2.20$^{+0.30}_{-0.35}$ for B6 and 2.20$^{+0.45}_{-0.30}$ for B7 which are consistent with the redshift of the lyman alpha emission within uncertainties, indicating that both FIR sources are likely associated with the LABs. The associated FIR emission in B6 and B7 and high star formation rates strongly favor star formation in galaxies as an important powering source for the lyman alpha emission in both LABs. However, the other two, B1 and B5, are predominantly driven by the active galactic nuclei or other sources of energy still to be specified, but not mainly by star formation. In general, the LABs are powered by quite diverse sources of energy.



قيم البحث

اقرأ أيضاً

We present Spitzer observations of Lya Blobs (LAB) at z=2.38-3.09. The mid-infrared ratios (4.5/8um and 8/24um) indicate that ~60% of LAB infrared counterparts are cool, consistent with their infrared output being dominated by star formation and not active galactic nuclei (AGN). The rest have a substantial hot dust component that one would expect from an AGN or an extreme starburst. Comparing the mid-infrared to submillimeter fluxes (~850um or rest frame far infrared) also indicates a large percentage (~2/3) of the LAB counterparts have total bolometric energy output dominated by star formation, although the number of sources with sub-mm detections or meaningful upper limits remains small (~10). We obtained Infrared Spectrograph (IRS) spectra of 6 infrared-bright sources associated with LABs. Four of these sources have measurable polycyclic aromatic hydrocarbon (PAH) emission features, indicative of significant star formation, while the remaining two show a featureless continuum, indicative of infrared energy output completely dominated by an AGN. Two of the counterparts with PAHs are mixed sources, with PAH line-to-continuum ratios and PAH equivalent widths indicative of large energy contributions from both star formation and AGN. Most of the LAB infrared counterparts have large stellar masses, around 10^11 Mo. There is a weak trend of mass upper limit with the Lya luminosity of the host blob, particularly after the most likely AGN contaminants are removed. The range in likely energy sources for the LABs found in this and previous studies suggests that there is no single source of power that is producing all the known LABs.
Ly-alpha blobs (LABs) offer insight into the complex interface between galaxies and their circumgalactic medium. Whilst some LABs have been found to contain luminous star-forming galaxies and active galactic nuclei that could potentially power the Ly -alpha emission, others appear not to be associated with obvious luminous galaxy counterparts. It has been speculated that LABs may be powered by cold gas streaming on to a central galaxy, providing an opportunity to directly observe the `cold accretion mode of galaxy growth. Star-forming galaxies in LABs could be dust obscured and therefore detectable only at longer wavelengths. We stack deep SCUBA-2 observations of the SSA22 field to determine the average 850um flux density of 34 LABs. We measure S_850 = 0.6 +/- 0.2mJy for all LABs, but stacking the LABs by size indicates that only the largest third (area > 1794 kpc^2) have a mean detection, at 4.5 sigma, with S_850 = 1.4 +/- 0.3mJy. Only two LABs (1 and 18) have individual SCUBA-2 > 3.5 sigma detections at a depth of 1.1mJy/beam. We consider two possible mechanisms for powering the LABs and find that central star formation is likely to dominate the emission of Ly-alpha, with cold accretion playing a secondary role.
We report on a search for ultraluminous Lyman alpha emitting galaxies (LAEs) at z=6.6 using the NB921 filter on Hyper Suprime-Cam on the Subaru telescope. We searched a 30 degree squared area around the North Ecliptic Pole, which we observed in broad band g, r, i, z, and y and narrowband NB816 and NB921, for sources with NB921 < 23.5 and z - NB921 > 1.3. This corresponds to a selection of log L(Ly-alpha) > 43.5 erg/s. We followed up seven candidate LAEs (out of thirteen) with the Keck DEIMOS spectrograph and confirmed five z=6.6 LAEs, one z=6.6 AGN with a broad Ly-alpha line and a strong red continuum, and one low-redshift ([OIII]5007) galaxy. The five ultraluminous LAEs have wider line profiles than lower luminosity LAEs, and one source, NEPLA4, has a complex line profile similar to that of COLA1. In combination with previous results, we show that the line profiles of the z=6.6 ultraluminous LAEs are systematically different than those of lower luminosity LAEs at this redshift. This result suggests that ultraluminous LAEs generate highly ionized regions of the intergalactic medium in their vicinity that allow the full Lyman alpha profile of the galaxy---including any blue wings---to be visible. If this interpretation is correct, then ultraluminous LAEs offer a unique opportunity to determine the properties of the ionized zones around them, which will help in understanding the ionization of the z ~ 7 intergalactic medium. A simple calculation gives a very rough estimate of 0.015 for the escape fraction of ionizing photons, but more sophisticated calculations are needed to fully characterize the uncertainties.
High-redshift Lyman-alpha blobs (LABs) are an enigmatic class of objects that have been the subject of numerous observational and theoretical investigations. It is of particular interest to determine the dominant power sources for the copious luminos ity, as direct emission from HII regions, cooling gas, and fluorescence due to the presence of active galactic nuclei (AGN) can all contribute significantly. In this paper, we present the first theoretical model to consider all of these physical processes in an attempt to develop an evolutionary model for the origin of high-z LABs. This is achieved by combining a series of high-resolution cosmological zoom-in simulations with ionization and Lyman-alpha (Lya) radiative transfer models. We find that massive galaxies display a range of Lya luminosities and spatial extents (which strongly depend on the limiting surface brightness used) over the course of their lives, though regularly exhibit luminosities and sizes consistent with observed LABs. The model LABs are typically powered from a combination of recombination in star-forming galaxies, as well as cooling emission from gas associated with accretion. When AGN are included in the model, the fluorescence caused by AGN-driven ionization can be a significant contributor to the total Lya luminosity as well. We propose that the presence of an AGN may be predicted from the Gini coefficient of the blobs surface brightness. Within our modeled mass range, there are no obvious threshold physical properties that predict appearance of LABs, and only weak correlations of the luminosity with the physical properties of the host galaxy. This is because the emergent Lya luminosity from a system is a complex function of the gas temperature, ionization state, and Lya escape fraction.
Hydrogen Lyman-$alpha$ (Ly$alpha$) emission has been one of the major observational probes for the high redshift universe, since the first discoveries of high-$z$ Ly$alpha$ emitting galaxies in the late 1990s. Due to the strong Ly$alpha$ emission ori ginated by resonant scattering and recombination of the most-abundant element, Ly$alpha$ observations witness not only HII regions of star formation and AGN but also diffuse HI gas in the circum-galactic medium (CGM) and the inter-galactic medium (IGM). Here we review Ly$alpha$ sources, and present theoretical interpretations reached to date. We conclude that: 1) A typical Ly$alpha$ emitter (LAE) at $zgtrsim 2$ with a $L^*$ Ly$alpha$ luminosity is a high-$z$ counterpart of a local dwarf galaxy, a compact metal-poor star-forming galaxy (SFG) with an approximate stellar (halo) mass and star-formation rate of $10^{8-9} M_odot$ ($10^{10-11} M_odot$) and $1-10 M_odot$ yr$^{-1}$, respectively; 2) High-$z$ SFGs ubiquitously have a diffuse Ly$alpha$ emitting halo in the CGM extending to the halo virial radius and beyond; 3) Remaining neutral hydrogen at the epoch of reionization makes a strong dimming of Ly$alpha$ emission for galaxies at $z>6$ that suggest the late reionization history. The next generation large telescope projects will combine Ly$alpha$ emission data with HI Ly$alpha$ absorptions and 21cm radio data that map out the majority of hydrogen (HI+HII) gas, uncovering the exchanges of i) matter by outflow/inflow and ii) radiation, relevant to cosmic reionization, between galaxies and the CGM/IGM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا