ترغب بنشر مسار تعليمي؟ اضغط هنا

The Origin and Evolution of Lyman-alpha Blobs in Cosmological Galaxy Formation Simulations

141   0   0.0 ( 0 )
 نشر من قبل Benjamin Kimock
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-redshift Lyman-alpha blobs (LABs) are an enigmatic class of objects that have been the subject of numerous observational and theoretical investigations. It is of particular interest to determine the dominant power sources for the copious luminosity, as direct emission from HII regions, cooling gas, and fluorescence due to the presence of active galactic nuclei (AGN) can all contribute significantly. In this paper, we present the first theoretical model to consider all of these physical processes in an attempt to develop an evolutionary model for the origin of high-z LABs. This is achieved by combining a series of high-resolution cosmological zoom-in simulations with ionization and Lyman-alpha (Lya) radiative transfer models. We find that massive galaxies display a range of Lya luminosities and spatial extents (which strongly depend on the limiting surface brightness used) over the course of their lives, though regularly exhibit luminosities and sizes consistent with observed LABs. The model LABs are typically powered from a combination of recombination in star-forming galaxies, as well as cooling emission from gas associated with accretion. When AGN are included in the model, the fluorescence caused by AGN-driven ionization can be a significant contributor to the total Lya luminosity as well. We propose that the presence of an AGN may be predicted from the Gini coefficient of the blobs surface brightness. Within our modeled mass range, there are no obvious threshold physical properties that predict appearance of LABs, and only weak correlations of the luminosity with the physical properties of the host galaxy. This is because the emergent Lya luminosity from a system is a complex function of the gas temperature, ionization state, and Lya escape fraction.



قيم البحث

اقرأ أيضاً

132 - Sultan Hassan 2019
We examine the properties of damped Lyman-$alpha$ absorbers (DLAs) emerging from a single set of cosmological initial conditions in two state-of-the-art cosmological hydrodynamic simulations: {sc Simba} and {sc Technicolor Dawn}. The former includes star formation and black hole feedback treatments that yield a good match with low-redshift galaxy properties, while the latter uses multi-frequency radiative transfer to model an inhomogeneous ultraviolet background (UVB) self-consistently and is calibrated to match the Thomson scattering optical depth, UVB amplitude, and Ly-$alpha$ forest mean transmission at $z>5$. Both simulations are in reasonable agreement with the measured stellar mass and star formation rate functions at $zgeq 3$, and both reproduce the observed neutral hydrogen cosmological mass density, $Omega_{rm HI}(z)$. However, the DLA abundance and metallicity distribution are sensitive to the galactic outflows feedback and the UVB amplitude. Adopting a strong UVB and/or slow outflows under-produces the observed DLA abundance, but yields broad agreement with the observed DLA metallicity distribution. By contrast, faster outflows eject metals to larger distances, yielding more metal-rich DLAs whose observational selection may be more sensitive to dust bias. The DLA metallicity distribution in models adopting an ${rm H}_2$-regulated star formation recipe includes a tail extending to $[M/H] ll -3$, lower than any DLA observed to date, owing to curtailed star formation in low-metallicity galaxies. Our results show that DLA observations play an imporant role in constraining key physical ingredients in galaxy formation models, complementing traditional ensemble statistics such as the stellar mass and star formation rate functions.
481 - Y. Ao , Y. Matsuda , A. Beelen 2015
Lyman alpha blobs (LABs) are spatially extended lyman alpha nebulae seen at high redshift. The origin of Lyman alpha emission in the LABs is still unclear and under debate. To study their heating mechanism(s), we present Australia Telescope Compact A rray (ATCA) observations of the 20 cm radio emission and Herschel PACS and SPIRE measurements of the far-infrared (FIR) emission towards the four LABs in the protocluster J2143-4423 at z=2.38. Among the four LABs, B6 and B7 are detected in the radio with fluxes of 67+/-17 microJy and 77+/-16 microJy, respectively, and B5 is marginally detected at 3 sigma (51+/-16 microJy). For all detected sources, their radio positions are consistent with the central positions of the LABs. B6 and B7 are obviously also detected in the FIR. By fitting the data with different templates, we obtained redshifts of 2.20$^{+0.30}_{-0.35}$ for B6 and 2.20$^{+0.45}_{-0.30}$ for B7 which are consistent with the redshift of the lyman alpha emission within uncertainties, indicating that both FIR sources are likely associated with the LABs. The associated FIR emission in B6 and B7 and high star formation rates strongly favor star formation in galaxies as an important powering source for the lyman alpha emission in both LABs. However, the other two, B1 and B5, are predominantly driven by the active galactic nuclei or other sources of energy still to be specified, but not mainly by star formation. In general, the LABs are powered by quite diverse sources of energy.
We present cosmological zoom-in hydro-dynamical simulations for the formation of disc galaxies, implementing dust evolution and dust promoted cooling of hot gas. We couple an improved version of our previous treatment of dust evolution, which adopts the two-size approximation to estimate the grain size distribution, with the MUPPI star formation and feedback sub-resolution model. Our dust evolution model follows carbon and silicate dust separately. To distinguish differences induced by the chaotic behaviour of simulations from those genuinely due to different simulation set-up, we run each model six times, after introducing tiny perturbations in the initial conditions. With this method, we discuss the role of various dust-related physical processes and the effect of a few possible approximations adopted in the literature. Metal depletion and dust cooling affect the evolution of the system, causing substantial variations in its stellar, gas and dust content. We discuss possible effects on the Spectral Energy Distribution of the significant variations of the size distribution and chemical composition of grains, as predicted by our simulations during the evolution of the galaxy. We compare dust surface density, dust-to-gas ratio and small-to-big grain mass ratio as a function of galaxy radius and gas metallicity predicted by our fiducial run with recent observational estimates for three disc galaxies of different masses. The general agreement is good, in particular taking into account that we have not adjusted our model for this purpose.
237 - Mark Vogelsberger 2019
Over the last decades, cosmological simulations of galaxy formation have been instrumental for advancing our understanding of structure and galaxy formation in the Universe. These simulations follow the non-linear evolution of galaxies modeling a var iety of physical processes over an enormous range of scales. A better understanding of the physics relevant for shaping galaxies, improved numerical methods, and increased computing power have led to simulations that can reproduce a large number of observed galaxy properties. Modern simulations model dark matter, dark energy, and ordinary matter in an expanding space-time starting from well-defined initial conditions. The modeling of ordinary matter is most challenging due to the large array of physical processes affecting this matter component. Cosmological simulations have also proven useful to study alternative cosmological models and their impact on the galaxy population. This review presents a concise overview of the methodology of cosmological simulations of galaxy formation and their different applications.
In this work we model the observed evolution in comoving number density of Lyman-alpha blobs (LABs) as a function of redshift, and try to find which mechanism of emission is dominant in LAB. Our model calculates LAB emission both from cooling radiati on from the intergalactic gas accreting onto galaxies and from star formation (SF). We have used dark matter (DM) cosmological simulation to which we applied empirical recipes for Ly$alpha$ emission produced by cooling radiation and SF in every halo. In difference to the previous work, the simulated volume in the DM simulation is large enough to produce an average LABs number density. At a range of redshifts $zsim 1-7$ we compare our results with the observed luminosity functions of LABs and LAEs. Our cooling radiation luminosities appeared to be too small to explain LAB luminosities at all redshifts. In contrast, for SF we obtained a good agreement with observed LFs at all redshifts studied. We also discuss uncertainties which could influence the obtained results, and how LAB LFs could be related to each other in fields with different density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا