ﻻ يوجد ملخص باللغة العربية
Scatterings of electrons at quasiparticles or photons are very important for many topics in solid state physics, e.g., spintronics, magnonics or photonics, and therefore a correct numerical treatment of these scatterings is very important. For a quantum-mechanical description of these scatterings Fermis golden rule is used in order to calculate the transition rate from an initial state to a final state in a first-order time-dependent perturbation theory. One can calculate the total transition rate from all initial states to all final states with Boltzmann rate equations involving Brillouin zone integrations. The numerical treatment of these integrations on a finite grid is often done via a replacement of the Dirac delta distribution by a Gaussian. The Dirac delta distribution appears in Fermis golden rule where it describes the energy conservation among the interacting particles. Since the Dirac delta distribution is a not a function it is not clear from a mathematical point of view that this procedure is justified. We show with physical and mathematical arguments that this numerical procedure is in general correct, and we comment on critical points.
We report a novel approach for coherent multi-photon photoemission band mapping of the entire Brillouin zone with infrared light that is readily implemented in a laboratory setting. We excite a solid state material, Ag(110), with intense femtosecond
We report an efficient algorithm for calculating momentum-space integrals in solid state systems on modern graphics processing units (GPUs). Our algorithm is based on the tetrahedron method, which we demonstrate to be ideally suited for execution in
Slow flows of a slightly rarefied gas under high thermal stresses are considered. The correct fluid-dynamic description of this class of flows is based on the Kogan--Galkin--Friedlander equations, containing some non-Navier--Stokes terms in the momen
We numerically solve the Boltzmann equation for trapped fermions in the normal phase using the test-particle method. After discussing a couple of tests in order to estimate the reliability of the method, we apply it to the description of collective m
This note has few new results except, at the end, a redefinition of the `thermal distributor. The main purpose of this note is to clarify the solution of the non-local Peierls Boltzmann equation found by Hua and Lindsay (Phys. Rev. B 102, 104310 (202