ﻻ يوجد ملخص باللغة العربية
We numerically solve the Boltzmann equation for trapped fermions in the normal phase using the test-particle method. After discussing a couple of tests in order to estimate the reliability of the method, we apply it to the description of collective modes in a spherical harmonic trap. The numerical results are compared with those obtained previously by taking moments of the Boltzmann equation. We find that the general shape of the response function is very similar in both methods, but the relaxation time obtained from the simulation is significantly longer than that predicted by the method of moments. It is shown that the result of the method of moments can be corrected by including fourth-order moments in addition to the usual second-order ones and that this method agrees very well with our numerical simulations.
Due to Pauli blocking of intermediate states, the scattering matrix (or $T$ matrix) of two fermionic atoms in a Fermi gas becomes different from that of two atoms in free space. This effect becomes particularly important near a Feshbach resonance, wh
We discuss the unitary Fermi gas made of dilute and ultracold atoms with an infinite s-wave inter-atomic scattering length. First we introduce an efficient Thomas-Fermi-von Weizsacker density functional which describes accurately various static prope
We study the richer structures of quasi-one-dimensional Bogoliubov-de Genes collective excitations of F = 1 spinor Bose-Einstein condensate in a harmonic trap potential loaded in an optical lattice. Employing a perturbative method we report general a
We investigate the Zeldovich effect in the context of ultra-cold, harmonically trapped quantum gases. We suggest that currently available experimental techniques in cold-atoms research offer an exciting opportunity for a direct observation of the Zel
Studying the collective pairing phenomena in a two-component Fermi gas, we predict the appearance near the transition temperature $T_c$ of a well-resolved collective mode of quadratic dispersion. The mode is visible both above and below $T_c$ in the