ترغب بنشر مسار تعليمي؟ اضغط هنا

Slow nonisothermal flows: numerical and asymptotic analysis of the Boltzmann equation

183   0   0.0 ( 0 )
 نشر من قبل Oleg Rogozin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Oleg Rogozin




اسأل ChatGPT حول البحث

Slow flows of a slightly rarefied gas under high thermal stresses are considered. The correct fluid-dynamic description of this class of flows is based on the Kogan--Galkin--Friedlander equations, containing some non-Navier--Stokes terms in the momentum equation. Appropriate boundary conditions are determined from the asymptotic analysis of the Knudsen layer on the basis of the Boltzmann equation. Boundary conditions up to the second order of the Knudsen number are studied. Some two-dimensional examples are examined for their comparative analysis. The fluid-dynamic results are supported by numerical solution of the Boltzmann equation obtained by the Tcheremissines projection-interpolation discrete-velocity method extended for nonuniform grids. The competition pattern between the first- and the second-order nonlinear thermal-stress flows has been obtained for the first time.



قيم البحث

اقرأ أيضاً

A solution to the Boltzmann equation governing the thermal relic abundance of cold dark matter is constructed by matched asymptotic approximations. The approximation of the relic density is an asymptotic series valid when the abundance does not devia te significantly from its equilibrium value until small temperatures. Resonance and threshold effects are taken into account at leading order and found to be negligible unless the annihilation cross section is negligible at threshold. Comparisons are made to previously attempted constructions and to the freeze out approximation commonly employed in the literature. Extensions to higher order matching is outlined, and implications for solving related systems are discussed. We compare our results to a numerical determination of the relic abundance using a benchmark model and find a fantastic agreement. The method developed also serves as a solution to a wide class of problems containing an infinite order turning point.
214 - Q. Li , Y. L. He , G. H. Tang 2009
In this brief report, a thermal lattice-Boltzmann (LB) model is presented for axisymmetric thermal flows in the incompressible limit. The model is based on the double-distribution-function LB method, which has attracted much attention since its emerg ence for its excellent numerical stability. Compared with the existing axisymmetric thermal LB models, the present model is simpler and retains the inherent features of the standard LB method. Numerical simulations are carried out for the thermally developing laminar flows in circular ducts and the natural convection in an annulus between two coaxial vertical cylinders. The Nusselt number obtained from the simulations agrees well with the analytical solutions and/or the results reported in previous studies.
Central moment lattice Boltzmann method (LBM) is one of the more recent developments among the lattice kinetic schemes for computational fluid dynamics. A key element in this approach is the use of central moments to specify collision process and for cing, and thereby naturally maintaining Galilean invariance, an important characteristic of fluid flows. When the different central moments are relaxed at different rates like in a standard multiple relaxation time (MRT) formulation based on raw moments, it is endowed with a number of desirable physical and numerical features. Since the collision operator exhibits a cascaded structure, this approach is also known as the cascaded LBM. While the cascaded LBM has been developed sometime ago, a systematic study of its numerical properties, such as accuracy, grid convergence and stability for well defined canonical problems is lacking and the present work is intended to fulfill this need. We perform a quantitative study of the performance of the cascaded LBM for a set of benchmark problems of differing complexity, viz., Poiseuille flow, decaying Taylor-Green vortex flow and lid-driven cavity flow. We first establish its grid convergence and demonstrate second order accuracy under diffusive scaling for both the velocity field and its derivatives, i.e. components of the strain rate tensor, as well. The method is shown to quantitatively reproduce steady/unsteady analytical solutions or other numerical results with excellent accuracy. Numerical experiments further demonstrate that the central moment MRT LBM results in significant stability improvements when compared with certain existing collision models at moderate additional computational cost.
Non-Newtonian fluid flows, especially in three dimensions (3D), arise in numerous settings of interest to physics. Prior studies using the lattice Boltzmann method (LBM) of such flows have so far been limited to mainly to two dimensions and used less robust collision models. In this paper, we develop a new 3D cascaded LBM based on central moments and multiple relaxation times on a three-dimensional, nineteen velocity (D3Q19) lattice for simulation of generalized Newtonian (power law) fluid flows. The relaxation times of the second order moments are varied locally based on the local shear rate and parameterized by the consistency coefficient and the power law index of the nonlinear constitutive relation of the power law fluid. Numerical validation study of the 3D cascaded LBM for various benchmark problems, including the complex 3D non-Newtonian flow in a cubic cavity at different Reynolds numbers and power law index magnitudes encompassing shear thinning and shear thickening fluids, are presented. Furthermore, numerical stability comparisons of the proposed advanced LBM scheme against the LBM based on other collision models, such as the SRT model and MRT model based on raw moments, are made. Numerical results demonstrate the accuracy, second order grid convergence and significant improvements in stability of the 3D cascaded LBM for simulation of 3D non-Newtonian flows of power law fluids.
The steady-state simplified Pn (SPn) approximations to the linear Boltzmann equation have been proven to be asymptotically higher-order corrections to the diffusion equation in certain physical systems. In this paper, we present an asymptotic analysi s for the time-dependent simplified Pn equations up to n = 3. Additionally, SPn equations of arbitrary order are derived in an ad hoc way. The resulting SPn equations are hyperbolic and differ from those investigated in a previous work by some of the authors. In two space dimensions, numerical calculations for the Pn and SPn equations are performed. We simulate neutron distributions of a moving rod and present results for a benchmark problem, known as the checkerboard problem. The SPn equations are demonstrated to yield significantly more accurate results than diffusion approximations. In addition, for sufficiently low values of n, they are shown to be more efficient than Pn models of comparable cost.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا