ﻻ يوجد ملخص باللغة العربية
In this paper, we mainly focus on how to generalize some conclusions from nonnegative irreducible tensors to nonnegative weakly irreducible tensors. To do so, a basic and important lemma is proven using new tools. First, we give the definition of stochastic tensors. Then we show that every nonnegative weakly irreducible tensor with spectral radius being one is diagonally similar to a unique weakly irreducible stochastic tensor. Based on it, we prove some important lemmas, which help us to generalize the results related. Some counterexamples are provided to show that some conclusions for nonnegative irreducible tensors do not hold for nonnegative weakly irreducible tensors.
For a nonnegative weakly irreducible tensor $mathcal{A}$, we give some characterizations of the spectral radius of $mathcal{A}$, by using the digraph of tensors. As applications, some bounds on the spectral radius of the adjacency tensor and the sign
In this paper, we generalize some conclusions from the nonnegative irreducible tensor to the nonnegative weakly irreducible tensor and give more properties of eigenvalue problems.
Tubal scalars are usual vectors, and tubal matrices are matrices with every element being a tubal scalar. Such a matrix is often recognized as a third-order tensor. The product between tubal scalars, tubal vectors, and tubal matrices can be done by t
The aim of the paper is to produce new families of irreducible polynomials, generalizing previous results in the area. One example of our general result is that for a near-separated polynomial, i.e., polynomials of the form $F(x,y)=f_1(x)f_2(y)-f_2(x
In this paper, we show that if a lower-order Hankel tensor is positive semi-definite (or positive definite, or negative semi-definite, or negative definite, or SOS), then its associated higher-order Hankel tensor with the same generating vector, wher