ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal state discrimination and unstructured search in nonlinear quantum mechanics

137   0   0.0 ( 0 )
 نشر من قبل Andrew M. Childs
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonlinear variants of quantum mechanics can solve tasks that are impossible in standard quantum theory, such as perfectly distinguishing nonorthogonal states. Here we derive the optimal protocol for distinguishing two states of a qubit using the Gross-Pitaevskii equation, a model of nonlinear quantum mechanics that arises as an effective description of Bose-Einstein condensates. Using this protocol, we present an algorithm for unstructured search in the Gross-Pitaevskii model, obtaining an exponential improvement over a previous algorithm of Meyer and Wong. This result establishes a limitation on the effectiveness of the Gross-Pitaevskii approximation. More generally, we demonstrate similar behavior under a family of related nonlinearities, giving evidence that the ability to quickly discriminate nonorthogonal states and thereby solve unstructured search is a generic feature of nonlinear quantum mechanics.



قيم البحث

اقرأ أيضاً

In this work, we consider optimal state discrimination for a quantum system that interacts with an environment, i.e., states evolve under a quantum channel. We show the conditions on a quantum channel and an ensemble of states such that a measurement for optimal state discrimination is preserved. In particular, we show that when an ensemble of states with equal {it a priori} probabilities is given, an optimal measurement can be preserved over any quantum channel by applying local operations and classical communication, that is, by manipulating the quantum states before and after the channel application. Examples are provided for illustration. Our results can be readily applied to quantum communication protocols over various types of noise.
We extend the optimal filtering equation known from the Stratonovich filtering theory on the quantum process case. The used observation model is based on an indirect measurement method, where the measurement is performed on an ancilla system that is interacted with an unknown one. Observation model for single qudit system is proposed.
We present theory and experiment for the task of discriminating two nonorthogonal states, given multiple copies. We implement several local measurement schemes, on both pure states and states mixed by depolarizing noise. We find that schemes which ar e optimal (or have optimal scaling) without noise perform worse with noise than simply repeating the optimal single-copy measurement. Applying optimal control theory, we derive the globally optimal local measurement strategy, which outperforms all other local schemes, and experimentally implement it for various levels of noise.
A fundamental problem in quantum information is to explore the roles of different quantum correlations in a quantum information procedure. Recent work [Phys. Rev. Lett., 107 (2011) 080401] shows that the protocol for assisted optimal state discrimina tion (AOSD) may be implemented successfully without entanglement, but with another correlation, quantum dissonance. However, both the original work and the extension to discrimination of $d$ states [Phys. Rev. A, 85 (2012) 022328] have only proved that entanglement can be absent in the case with equal a emph{priori} probabilities. By improving the protocol in [Sci. Rep., 3 (2013) 2134], we investigate this topic in a simple case to discriminate three nonorthogonal states of a qutrit, with positive real overlaps. In our procedure, the entanglement between the qutrit and an auxiliary qubit is found to be completely unnecessary. This result shows that the quantum dissonance may play as a key role in optimal state discrimination assisted by a qubit for more general cases.
A fundamental problem in quantum information is to explore what kind of quantum correlations is responsible for successful completion of a quantum information procedure. Here we study the roles of entanglement, discord, and dissonance needed for opti mal quantum state discrimination when the latter is assisted with an auxiliary system. In such process, we present a more general joint unitary transformation than the existing results. The quantum entanglement between a principal qubit and an ancilla is found to be completely unnecessary, as it can be set to zero in the arbitrary case by adjusting the parameters in the general unitary without affecting the success probability. This result also shows that it is quantum dissonance that plays as a key role in assisted optimal state discrimination and not quantum entanglement. A necessary criterion for the necessity of quantum dissonance based on the linear entropy is also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا