ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal nonlinear filtering of quantum state

56   0   0.0 ( 0 )
 نشر من قبل Liubov Markovich
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the optimal filtering equation known from the Stratonovich filtering theory on the quantum process case. The used observation model is based on an indirect measurement method, where the measurement is performed on an ancilla system that is interacted with an unknown one. Observation model for single qudit system is proposed.



قيم البحث

اقرأ أيضاً

Nonlinear variants of quantum mechanics can solve tasks that are impossible in standard quantum theory, such as perfectly distinguishing nonorthogonal states. Here we derive the optimal protocol for distinguishing two states of a qubit using the Gros s-Pitaevskii equation, a model of nonlinear quantum mechanics that arises as an effective description of Bose-Einstein condensates. Using this protocol, we present an algorithm for unstructured search in the Gross-Pitaevskii model, obtaining an exponential improvement over a previous algorithm of Meyer and Wong. This result establishes a limitation on the effectiveness of the Gross-Pitaevskii approximation. More generally, we demonstrate similar behavior under a family of related nonlinearities, giving evidence that the ability to quickly discriminate nonorthogonal states and thereby solve unstructured search is a generic feature of nonlinear quantum mechanics.
271 - Liang Cui , Jie Su , Jiamin Li 2018
Multi-photon quantum interference is the underlying principle for optical quantum information processing protocols. Indistinguishability is the key to quantum interference. Therefore, the success of many protocols in optical quantum information proce ssing relies on the availability of photon states with a well-defined spatial and temporal mode. Photons in single spatial mode can be obtained from nonlinear processes in single-mode waveguides. For the temporal mode, the common approach is to engineer the nonlinear processes. But it is complicated because the spectral properties and the nonlinear interaction are often intertwined through phase matching condition. In this paper, we study a different approach which is based on an SU(1,1) nonlinear interferometer with a pulsed pump and a controllable linear spectral phase shift for precise engineering. We systematically analyze the important figures of merit such as modal purity and heralding efficiency to investigate the feasibility of this approach. Specifically, we analyze in detail the requirement on the spectral phase engineering to optimize the figures of merit and apply numerical simulations to a fiber system. Both modal purity and efficiency are improved simultaneously. Furthermore, a novel multi-stage nonlinear interferometer is proposed and shown to achieve more precise state engineering for near-ideal single-mode operation and near-unity efficiency. We also extend the study to the case of high gain in the four-wave mixing process for the spectral engineering of quantum entanglement in continuous variables. Our investigation provides a new approach for precisely tailoring the spectral property of quantum light sources, especially, photon pairs can be engineered to simultaneously possess the features of high purity, high collection efficiency, high brightness, and high flexibility in wavelength and bandwidth selection.
An algorithm that initializes a quantum register to a state with a specified energy range is given, corresponding to a quantum implementation of the celebrated Feit-Fleck method. This is performed by introducing a nondeterministic quantum implementat ion of a standard spectral filtering procedure combined with an apodization technique, allowing for accurate state initialization. It is shown that the implementation requires only two ancilla qubits. A lower bound for the total probability of success of this algorithm is derived, showing that this scheme can be realized using a finite, relatively low number of trials. Assuming the time evolution can be performed efficiently and using a trial state polynomially close to the desired states, it is demonstrated that the number of operations required scales polynomially with the number of qubits. Tradeoffs between accuracy and performance are demonstrated in a simple example: the harmonic oscillator. This algorithm would be useful for the initialization phase of the simulation of quantum systems on digital quantum computers.
We develop a practical quantum tomography protocol and implement measurements of pure states of ququarts realized with polarization states of photon pairs (biphotons). The method is based on an optimal choice of the measuring schemes parameters that provides better quality of reconstruction for the fixed set of statistical data. A high accuracy of the state reconstruction (above 0.99) indicates that developed methodology is adequate.
Rather than point estimators, states of a quantum system that represent ones best guess for the given data, we consider optimal regions of estimators. As the natural counterpart of the popular maximum-likelihood point estimator, we introduce the maxi mum-likelihood region---the region of largest likelihood among all regions of the same size. Here, the size of a region is its prior probability. Another concept is the smallest credible region---the smallest region with pre-chosen posterior probability. For both optimization problems, the optimal region has constant likelihood on its boundary. We discuss criteria for assigning prior probabilities to regions, and illustrate the concepts and methods with several examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا