ﻻ يوجد ملخص باللغة العربية
We present theory and experiment for the task of discriminating two nonorthogonal states, given multiple copies. We implement several local measurement schemes, on both pure states and states mixed by depolarizing noise. We find that schemes which are optimal (or have optimal scaling) without noise perform worse with noise than simply repeating the optimal single-copy measurement. Applying optimal control theory, we derive the globally optimal local measurement strategy, which outperforms all other local schemes, and experimentally implement it for various levels of noise.
A fundamental problem in quantum information is to explore the roles of different quantum correlations in a quantum information procedure. Recent work [Phys. Rev. Lett., 107 (2011) 080401] shows that the protocol for assisted optimal state discrimina
A fundamental problem in quantum information is to explore what kind of quantum correlations is responsible for successful completion of a quantum information procedure. Here we study the roles of entanglement, discord, and dissonance needed for opti
We present an approach to single-shot high-fidelity preparation of an $n$-qubit state based on neighboring optimal control theory. This represents a new application of the neighboring optimal control formalism which was originally developed to produc
Optimization of the mean efficiency for unambiguous (or error free)discrimination among $N$ given linearly independent nonorthogonal states should be realized in a way to keep the probabilistic quantum mechanical interpretation. This imposes a condit
In this work, we consider optimal state discrimination for a quantum system that interacts with an environment, i.e., states evolve under a quantum channel. We show the conditions on a quantum channel and an ensemble of states such that a measurement