ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting Robustness in Priced Timed Games

115   0   0.0 ( 0 )
 نشر من قبل Shankara Narayanan Krishna
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Priced timed games are optimal-cost reachability games played between two players---the controller and the environment---by moving a token along the edges of infinite graphs of configurations of priced timed automata. The goal of the controller is to reach a given set of target locations as cheaply as possible, while the goal of the environment is the opposite. Priced timed games are known to be undecidable for timed automata with $3$ or more clocks, while they are known to be decidable for automata with $1$ clock. In an attempt to recover decidability for priced timed games Bouyer, Markey, and Sankur studied robust priced timed games where the environment has the power to slightly perturb delays proposed by the controller. Unfortunately, however, they showed that the natural problem of deciding the existence of optimal limit-strategy---optimal strategy of the controller where the perturbations tend to vanish in the limit---is undecidable with $10$ or more clocks. In this paper we revisit this problem and improve our understanding of the decidability of these games. We show that the limit-strategy problem is already undecidable for a subclass of robust priced timed games with $5$ or more clocks. On a positive side, we show the decidability of the existence of almost optimal strategies for the same subclass of one-clock robust priced timed games by adapting a classical construction by Bouyer at al. for one-clock priced timed games.



قيم البحث

اقرأ أيضاً

This paper offers a survey of uppaalsmc, a major extension of the real-time verification tool uppaal. uppaalsmc allows for the efficient analysis of performance properties of networks of priced timed automata under a natural stochastic semantics. In particular, uppaalsmc relies on a series of extensions of the statistical model checking approach generalized to handle real-time systems and estimate undecidable problems. uppaalsmc comes together with a friendly user interface that allows a user to specify complex problems in an efficient manner as well as to get feedback in the form of probability distributions and compare probabilities to analyze performance aspects of systems. The focus of the survey is on the evolution of the tool - including modeling and specification formalisms as well as techniques applied - together with applications of the tool to case studies.
Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players, Player Min and Player Max, by moving a token along the states of the graph to form an infinite run. The goal of Player Min is to minimize the limit average weight of the run, while the goal of the Player Max is the opposite. Brenguier, Cassez, and Raskin recently studied a variation of these games and showed that mean-payoff games are undecidable for timed automata with five or more clocks. We refine this result by proving the undecidability of mean-payoff games with three clocks. On a positive side, we show the decidability of mean-payoff games on one-clock timed automata with binary price-rates. A key contribution of this paper is the application of dynamic programming based proof techniques applied in the context of average reward optimization on an uncountable state and action space.
Active learning of timed languages is concerned with the inference of timed automata from observed timed words. The agent can query for the membership of words in the target language, or propose a candidate model and verify its equivalence to the tar get. The major difficulty of this framework is the inference of clock resets, central to the dynamics of timed automata, but not directly observable. Interesting first steps have already been made by restricting to the subclass of event-recording automata, where clock resets are tied to observations. In order to advance towards learning of general timed automata, we generalize this method to a new class, called reset-free event-recording automata, where some transitions may reset no clocks. This offers the same challenges as generic timed automata while keeping the simpler framework of event-recording automata for the sake of readability. Central to our contribution is the notion of invalidity, and the algorithm and data structures to deal with it, allowing on-the-fly detection and pruning of reset hypotheses that contradict observations, a key to any efficient active-learning procedure for generic timed automata.
We study the (parameter) synthesis problem for one-counter automata with parameters. One-counter automata are obtained by extending classical finite-state automata with a counter whose value can range over non-negative integers and be tested for zero . The updates and tests applicable to the counter can further be made parametric by introducing a set of integer-valued variables called parameters. The synthesis problem for such automata asks whether there exists a valuation of the parameters such that all infinite runs of the automaton satisfy some omega-regular property. Lechner showed that (the complement of) the problem can be encoded in a restricted one-alternation fragment of Presburger arithmetic with divisibility. In this work (i) we argue that said fragment, called AERPADPLUS, is unfortunately undecidable. Nevertheless, by a careful re-encoding of the problem into a decidable restriction of AERPADPLUS, (ii) we prove that the synthesis problem is decidable in general and in N2EXP for several fixed omega-regular properties. Finally, (iii) we give a polynomial-space algorithm for the special case of the problem where parameters can only be used in tests, and not updates, of the counter.
We study tree games developed recently by Matteo Mio as a game interpretation of the probabilistic $mu$-calculus. With expressive power comes complexity. Mio showed that tree games are able to encode Blackwell games and, consequently, are not determi ned under deterministic strategies. We show that non-stochastic tree games with objectives recognisable by so-called game automata are determined under deterministic, finite memory strategies. Moreover, we give an elementary algorithmic procedure which, for an arbitrary regular language L and a finite non-stochastic tree game with a winning objective L decides if the game is determined under deterministic strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا