ترغب بنشر مسار تعليمي؟ اضغط هنا

UPPAAL-SMC: Statistical Model Checking for Priced Timed Automata

165   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper offers a survey of uppaalsmc, a major extension of the real-time verification tool uppaal. uppaalsmc allows for the efficient analysis of performance properties of networks of priced timed automata under a natural stochastic semantics. In particular, uppaalsmc relies on a series of extensions of the statistical model checking approach generalized to handle real-time systems and estimate undecidable problems. uppaalsmc comes together with a friendly user interface that allows a user to specify complex problems in an efficient manner as well as to get feedback in the form of probability distributions and compare probabilities to analyze performance aspects of systems. The focus of the survey is on the evolution of the tool - including modeling and specification formalisms as well as techniques applied - together with applications of the tool to case studies.



قيم البحث

اقرأ أيضاً

Priced timed games are optimal-cost reachability games played between two players---the controller and the environment---by moving a token along the edges of infinite graphs of configurations of priced timed automata. The goal of the controller is to reach a given set of target locations as cheaply as possible, while the goal of the environment is the opposite. Priced timed games are known to be undecidable for timed automata with $3$ or more clocks, while they are known to be decidable for automata with $1$ clock. In an attempt to recover decidability for priced timed games Bouyer, Markey, and Sankur studied robust priced timed games where the environment has the power to slightly perturb delays proposed by the controller. Unfortunately, however, they showed that the natural problem of deciding the existence of optimal limit-strategy---optimal strategy of the controller where the perturbations tend to vanish in the limit---is undecidable with $10$ or more clocks. In this paper we revisit this problem and improve our understanding of the decidability of these games. We show that the limit-strategy problem is already undecidable for a subclass of robust priced timed games with $5$ or more clocks. On a positive side, we show the decidability of the existence of almost optimal strategies for the same subclass of one-clock robust priced timed games by adapting a classical construction by Bouyer at al. for one-clock priced timed games.
Timed Automata (TA) are a very popular modeling formalism for systems with time-sensitive properties. A common task is to verify if a network of TA satisfies a given property, usually expressed in Linear Temporal Logic (LTL), or in a subset of Timed Computation Tree Logic (TCTL). In this paper, we build upon the TACK bounded model checker for TA, which supports a signal-based semantics of TA and the richer Metric Interval Temporal Logic (MITL). TACK encodes both the TA network and property into a variant of LTL, Constraint LTL over clocks (CLTLoc). The produced CLTLoc formula can then be solved by tools such as Zot, which transforms CLTLoc properties into the input logics of Satisfiability Modulo Theories (SMT) solvers. We present a novel method that preserves TACKs encoding of MITL properties while encoding the TA network directly into the SMT solver language, making use of both the BitVector logic and the logic of real arithmetics. We also introduce several optimizations that allow us to significantly outperform the CLTLoc encoding in many practical scenarios.
Probabilistic timed automata are an extension of timed automata with discrete probability distributions. We consider model-checking algorithms for the subclasses of probabilistic timed automata which have one or two clocks. Firstly, we show that PCTL probabilistic model-checking problems (such as determining whether a set of target states can be reached with probability at least 0.99 regardless of how nondeterminism is resolved) are PTIME-complete for one-clock probabilistic timed automata, and are EXPTIME-complete for probabilistic timed automata with two clocks. Secondly, we show that, for one-clock probabilistic timed automata, the model-checking problem for the probabilistic timed temporal logic PCTL is EXPTIME-complete. However, the model-checking problem for the subclass of PCTL which does not permit both punctual timing bounds, which require the occurrence of an event at an exact time point, and comparisons with probability bounds other than 0 or 1, is PTIME-complete for one-clock probabilistic timed automata.
Active learning of timed languages is concerned with the inference of timed automata from observed timed words. The agent can query for the membership of words in the target language, or propose a candidate model and verify its equivalence to the tar get. The major difficulty of this framework is the inference of clock resets, central to the dynamics of timed automata, but not directly observable. Interesting first steps have already been made by restricting to the subclass of event-recording automata, where clock resets are tied to observations. In order to advance towards learning of general timed automata, we generalize this method to a new class, called reset-free event-recording automata, where some transitions may reset no clocks. This offers the same challenges as generic timed automata while keeping the simpler framework of event-recording automata for the sake of readability. Central to our contribution is the notion of invalidity, and the algorithm and data structures to deal with it, allowing on-the-fly detection and pruning of reset hypotheses that contradict observations, a key to any efficient active-learning procedure for generic timed automata.
The paper describes an abstraction for protocols that are based on multiple rounds of Chaums Dining Cryptographers protocol. It is proved that the abstraction preserves a rich class of specifications in the logic of knowledge, including specification s describing what an agent knows about other agents knowledge. This result can be used to optimize model checking of Dining Cryptographers-based protocols, and applied within a methodology for knowledge-based program implementation and verification. Some case studies of such an application are given, for a protocol that uses the Dining Cryptographers protocol as a primitive in an anonymous broadcast system. Performance results are given for model checking knowledge-based specifications in the concrete and abstract models of this protocol, and some new conclusions about the protocol are derived.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا