ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures

180   0   0.0 ( 0 )
 نشر من قبل Yurui Fang PhD
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule.



قيم البحث

اقرأ أيضاً

The optical response of a coupled nanowire dimer is studied using a fully quantum mechanical approach. The translational invariance of the system allows to apply the time--dependent density functional theory for the plasmonic dimer with the largest s ize considered so far in quantum calculations. Detailed comparisons with results from classical electromagnetic calculations based on local and non local hydrodynamic response, as well as with results of the recently developed quantum corrected model is performed. We show that electron tunneling and dynamical screening are the major nonlocal quantum effects determining the plasmonic modes and field enhancement in the system. Account for the electron tunneling at small junction sizes allows semi-quantitative description of quantum results within classical framework. We also discuss the shortcomings of classical treatments using non-local dielectric permittivities based on hydrodynamic models. Finally, the implications of the actual position of the screening charge density for the plasmon ruler applications are demonstrated.
Cellulose is the most abundant bio-polymer on earth. Cellulose fibres, such as the one extracted form cotton or woodpulp, have been used by humankind for hundreds of years to make textiles and paper. Here we show how, by engineering light matter-inte raction, we can optimise light scattering using exclusively cellulose nanocrystals. The produced material is sustainable, biocompatible and, when compared to ordinary microfibre-based paper, it shows enhanced scattering strength (x4) yielding a transport mean free path as low as 3.5 um in the visible light range. The experimental results are in a good agreement with the theoretical predictions obtained with a diffusive model for light propagation.
The use of magneto-optical techniques to tune the plasmonic response of nanostructures is a hot topic in active plasmonics, with fascinating implications for several plasmon-based applications and devices. For this emerging field, called magnetoplasm onics, plasmonic nanomaterials with strong optical response to magnetic field are desired, which is generally challenging to achieve with pure noble metals. To overcome this issue, several efforts have been carried out to design and tailor the magneto-optical response of metal nanostructures, mainly by combining plasmonic and magnetic materials in a single nanostructure. In this tutorial we focus our attention on magnetoplasmonic effects in purely plasmonic nanostructures, as they are a valuable model system allowing for an easier rationalization of magnetoplasmonic effects. The most common magneto-optical experimental methods employed to measure these effects are introduced, followed by a review of the major experimental observations that are discussed within the framework of an analytical model developed for the rationalization of magnetoplasmonic effects. Different materials are discussed, from noble metals to novel plasmonic materials, such as heavily doped semiconductors.
The ability to harness light-matter interactions at the few-photon level plays a pivotal role in quantum technologies. Single photons - the most elementary states of light - can be generated on-demand in atomic and solid state emitters. Two-photon st ates are also key quantum assets, but achieving them in individual emitters is challenging because their generation rate is much slower than competing one-photon processes. We demonstrate that atomically thin plasmonic nanostructures can harness two-photon spontaneous emission, resulting in giant far-field two-photon production, a wealth of resonant modes enabling tailored photonic and plasmonic entangled states, and plasmon-assisted single-photon creation orders of magnitude more efficient than standard one-photon emission. We unravel the two-photon spontaneous emission channels and show that their spectral line-shapes emerge from an intricate interplay between Fano and Lorentzian resonances. Enhanced two-photon spontaneous emission in two-dimensional nanostructures paves the way to an alternative efficient source of light-matter entanglement for on-chip quantum information processing and free-space quantum communications.
We investigate the dynamic nuclear polarization from the hyperfine interaction between nonequilibrium electronic spins and nuclear spins coupled to them in semiconductor nanostructures. We derive the time and position dependence of the induced nuclea r spin polarization and dipolar magnetic fields. In GaAs/AlGaAs parabolic quantum wells the nuclear spin polarization can be as high as 80% and the induced nuclear magnetic fields can approach a few gauss with an associated nuclear resonance shift of the order of kHz when the electronic system is 100% spin polarized. These fields and shifts can be tuned using small electric fields. We discuss the implications of such control for optical nuclear magnetic resonance experiments in low-dimensional semiconductor nanostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا