ﻻ يوجد ملخص باللغة العربية
Environmental influences on the dynamics of a coupled qubit-oscillator system are studied analytically. We investigate the case of a quasi-degenerate qubit within the ultra-strong coupling regime for which the qubit frequency is much smaller than the frequency of the oscillator, and the coupling between the qubit and the oscillator is large, both of which invalidate the usually employed rotating wave approximation. In contrast to the standard quantum optics master equation, we explicitly take the qubit-oscillator coupling into account while microscopically deriving a dressed state master equation. Using the derived master equation, we discuss a spectroscopic technique which can be used to probe the dressed energy level structure of the qubit-oscillator system.
The Tavis-Cummings model for more than one qubit interacting with a common oscillator mode is extended beyond the rotating wave approximation (RWA). We explore the parameter regime in which the frequencies of the qubits are much smaller than the osci
We present an analytical method for the two-qubit quantum Rabi model. While still operating in the frame of the generalized rotating-wave approximation (GRWA), our method further embraces the idea of introducing variational parameters. The optimal va
We present the analytical solution of the Tavis-Cummings (TC) model for more than one qubit inhomogeneously coupled to a single mode radiation field beyond the rotating-wave approximation (RWA). The significant advantage of the displaced oscillator b
We study the dynamics of two qubits interacting with a single mode of a harmonic oscillator beyond the rotating wave approximation in the ideally degenerate regime. Exact analytic expressions are obtained for state properties of interest, including q
Here we use perturbation techniques based on the averaging method to investigate Rabi oscillations in cw and pulse-driven two-level systems (TLSs). By going beyond the rotating-wave approximation, especifically to second-order in perturbation, we obt