ﻻ يوجد ملخص باللغة العربية
We study the high magnetic field regime of the antiferromagnetic insulator Cs$_2$CuCl$_4$ by expressing the spin-1/2 operators in the relevant Heisenberg model in terms of hard-core bosons and implementing the hard-core constraint via an infinite on-site interaction. We focus on the case where the external magnetic field exceeds the saturation field $B_{c}approx8.5;mathrm{T}$ and is oriented along the crystallographic $a$ axis perpendicular to the lattice plane. Because in this case the excited states are separated by an energy gap from the ground state, we may use the self-consistent ladder approximation to take the strong correlations due to the hard-core constraint into account. In Cs$_2$CuCl$_4$ there are additional interactions besides the hard-core interaction which we treat in self-consistent Hartree-Fock approximation. We calculate the spectral function of the hard-core bosons from which we obtain the in-plane components of the dynamic structure factor, the magnetic susceptibility, and the specific heat. Our results for the specific heat are in good agreement with the available experimental data. We conclude that the self-consistent ladder approximation in combination with a self-consistent Hartree-Fock decoupling of the non-hard-core interactions gives an accurate description of the physical properties of gapped hard-core bosons in two dimensions at finite temperatures.
We report on high-field electron spin resonance (ESR) studies of magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs$_2$CuBr$_4$. Frequency-field diagrams of ESR excitations are measured for different orientations of magnetic f
Quantum triangular-lattice antiferromagnets are important prototype systems to investigate phenomena of the geometrical frustration in condensed matter. Apart from highly unusual magnetic properties, they possess a rich phase diagram (ranging from an
We report on low-temperature heat-transport properties of the spin-1/2 triangular-lattice antiferromagnet Cs$_2$CuCl$_4$. Broad maxima in the thermal conductivity along the three principal axes, observed at about 5 K, are interpreted in terms of the
A layered triangular lattice with spin-1/2 ions is an ideal platform to explore highly entangled exotic states like quantum spin liquid (QSL). Here, we report a systematic in-field neutron scattering study on a perfect two-dimensional triangular-latt
Specific heat and the magnetocaloric effect are used to probe the field-induced up-up-down phase of Cs2CuBr4, a quasi-two-dimensional spin-1/2 triangular antiferromagnet with near-maximal frustration. The shape of the magnetic phase diagram shows tha