ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamics of the Up-Up-Down Phase of the S = 1/2 Triangular-Lattice Antiferromagnet Cs$_2$CuBr$_4$

211   0   0.0 ( 0 )
 نشر من قبل Yasu Takano
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Specific heat and the magnetocaloric effect are used to probe the field-induced up-up-down phase of Cs2CuBr4, a quasi-two-dimensional spin-1/2 triangular antiferromagnet with near-maximal frustration. The shape of the magnetic phase diagram shows that the phase is stabilized by quantum fluctuations, not by thermal fluctuations as in the corresponding phase of classical spins. The magnon gaps determined from the specific heat are considerably larger than those expected for a Heisenberg antiferromagnet, probably due to the presence of a small Dzyaloshinskii-Moriya interaction.

قيم البحث

اقرأ أيضاً

We report on high-field electron spin resonance (ESR) studies of magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs$_2$CuBr$_4$. Frequency-field diagrams of ESR excitations are measured for different orientations of magnetic f ields up to 25 T. We show that the substantial zero-field energy gap, $Deltaapprox9.5$ K, observed in the low-temperature excitation spectrum of Cs$_2$CuBr$_4$ [Zvyagin $et~al.$, Phys. Rev. Lett. 112, 077206 (2014)], is present well above $T_N$. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below $T_N$ the high-energy spin dynamics in Cs$_2$CuBr$_4$ is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.
The field induced magnetic phase transitions of Cs$_2$CuBr$_4$ were investigated by means of magnetization process and neutron scattering experiments. This system undergoes magnetic phase transition at Ne{e}l temperature $T_mathrm{N}=1.4$ K at zero f ield, and exhibits the magnetization plateau at approximately one third of the saturation magnetization for the field directions $Hparallel b$ and $Hparallel c$. In the present study, additional symptom of the two-third magnetization plateau was found in the field derivative of the magnetization process. The magnetic structure was found to be incommensurate with the ordering vector $boldsymbol{Q}=(0, 0.575, 0)$ at zero field. With increasing magnetic field parallel to the c-axis, the ordering vector increases continuously and is locked at $boldsymbol{Q}=(0, 0.662, 0)$ in the plateau field range $13.1 mathrm{T} < H < 14.4 mathrm{T}$. This indicates that the collinear textit{up-up-down} spin structure is stabilized by quantum fluctuation at the magnetization plateau.
Quantum triangular-lattice antiferromagnets are important prototype systems to investigate phenomena of the geometrical frustration in condensed matter. Apart from highly unusual magnetic properties, they possess a rich phase diagram (ranging from an unfrustrated square lattice to a quantum spin liquid), yet to be confirmed experimentally. One major obstacle in this area of research is the lack of materials with appropriate (ideally tuned) magnetic parameters. Using Cs$_2$CuCl$_4$ as a model system, we demonstrate an alternative approach, where, instead of the chemical composition, the spin Hamiltonian is altered by hydrostatic pressure. The approach combines high-pressure electron spin resonance and magnetization measurements, allowing us not only to quasi-continuously tune the exchange parameters, but also to accurately monitor them. Our experiments indicate a substantial increase of the exchange coupling ratio from 0.3 to 0.42 at a pressure of 1.8 GPa, revealing a number of emergent field-induced phases.
Frustrated quasidoublets without time-reversal symmetry can host highly unconventional magnetic structures with continuously distributed order parameters even in a single-phase crystal. Here, we report the comprehensive thermodynamic and neutron diff raction investigation on the single crystal of TmMgGaO$_4$, which entails non-Kramers Tm$^{3+}$ ions arranged on a geometrically perfect triangular lattice. The crystal electric field (CEF) randomness caused by the site-mixing disorder of the nonmagnetic Mg$^{2+}$ and Ga$^{3+}$ ions, merges two lowest-lying CEF singlets of Tm$^{3+}$ into a ground-state (GS) quasidoublet. Well below $T_c$ $sim$ 0.7 K, a small fraction of the antiferromagnetically coupled Tm$^{3+}$ Ising quasidoublets with small inner gaps condense into two-dimensional (2D) up-up-down magnetic structures with continuously distributed order parameters, and give rise to the emph{columnar} magnetic neutron reflections below $mu_0H_c$ $sim$ 2.6 T, with highly anisotropic correlation lengths, $xi_{ab}$ $geq$ 250$a$ in the triangular plane and $xi_c$ $<$ $c$/12 between the planes. The remaining fraction of the Tm$^{3+}$ ions remain nonmagnetic at 0 T and become uniformly polarized by the applied longitudinal field at low temperatures. We argue that the similar model can be generally applied to other compounds of non-Kramers rare-earth ions with correlated GS quasidoublets.
We report on low-temperature heat-transport properties of the spin-1/2 triangular-lattice antiferromagnet Cs$_2$CuCl$_4$. Broad maxima in the thermal conductivity along the three principal axes, observed at about 5 K, are interpreted in terms of the Debye model, including the phonon Umklapp scattering. For thermal transport along the $b$ axis, we observed a pronounced field-dependent anomaly, close to the transition into the three-dimensional long-range-ordered state. No such anomalies were found for the transport along the $a$ and $c$ directions. We argue that this anisotropic behavior is related to an additional heat-transport channel through magnetic excitations, that can best propagate along the direction of the largest exchange interaction. Besides, peculiarities of the heat transport of Cs$_2$CuCl$_4$ in magnetic fields up to the saturation field and above are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا