ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry-imposed shape of linear response tensors

315   0   0.0 ( 0 )
 نشر من قبل Sebastian Wimmer
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A scheme suggested in the literature to determine the symmetry-imposed shape of linear response tensors is revised and extended to allow for the treatment of more complex situations. The extended scheme is applied to discuss the shape of the spin conductivity tensor for all magnetic space groups. This allows in particular investigating the character of longitudinal as well as transverse spin transport for arbitrary crystal structure and magnetic order that give rise e.g. to the spin Hall, Nernst and the spin-dependent Seebeck effects. In addition we draw attention to a new longitudinal spin transport phenomenon occurring in certain nonmagnetic solids.



قيم البحث

اقرأ أيضاً

The long spin-diffusion length, spin-lifetimes and excellent optical absorption coefficient of graphene provide an excellent platform for building opto-electronic devices as well as spin-based logic in a nanometer regime. In this study, by employing density functional theory and its time-dependent version, we provide a detailed analysis of how the size and shape of graphene nanoflakes can be used to alter their magnetic structure and optical properties. As the edges of zigzag graphene nanoribbons are known to align anti-ferromagnetically and armchair nanoribbons are typically non-magnetic, a combination of both in a nanoflake geometry can be used to optimize the ground-state magnetic structure and tailor the exchange coupling decisive for ferro- or anti-ferromagnetic edge magnetism, thereby offering the possibility to optimize the external fields needed to switch magnetic ordering. Most importantly, we show that the magnetic state alters the optical response of the flake leading to the possibility of opto-spintronic applications.
Symmetry and magnitude of spin-orbit torques (SOT), i.e., current-induced torques on the magnetization of systems lacking inversion symmetry, are investigated in a fully relativistic linear response framework based on the Kubo formalism. By applying all space-time symmetry operations contained in the magnetic point group of a solid to the relevant response coefficient, the torkance expressed as torque-current correlation function, restrictions to the shape of the direct and inverse response tensors are obtained. These are shown to apply to the corresponding thermal analogues as well, namely the direct and inverse thermal SOT in response to a temperature gradient or heat current. Using an implementation of the Kubo-Bastin formula for the torkance into a first-principles multiple-scattering Greens function framework and accounting for disorder effects via the so-called coherent potential approximation (CPA), all contributions to the SOT in pure systems, dilute as well as concentrated alloys can be treated on equal footing. This way, material specific values for all torkance tensor elements in the fcc (111) trilayer alloy system Pt | Fe$_x$Co$_{1-x}$ | Cu are obtained over a wide concentration range and discussed in comparison to results for electrical and spin conductivity, as well as to previous work - in particular concerning symmetry w.r.t. magnetization reversal and the nature of the various contributions.
140 - T. Arikawa , Q. Zhang , L. Ren 2013
Anisotropy is ubiquitous in solids and enhanced in low-dimensional materials. In response to an electromagnetic wave, anisotropic absorptive and refractive properties result in dichroic and birefringent optical phenomena both in the linear and nonlin ear optics regimes. Such material properties have led to a diverse array of useful polarization components in the visible and near-infrared, but mature technology is non-existent in the terahertz (THz). Here, we review several novel types of anisotropic material responses observed in the THz frequency range, including both linear and circular anisotropy, which have long-term implications for the development of THz polarization optics. We start with the extreme linear anisotropy of macroscopically aligned carbon nanotubes, arising from their intrinsically anisotropic dynamic conductivity. Magnetically induced anisotropy will then be reviewed, including the giant Faraday effects observed in semiconductors, semimetals, and two-dimensional electron systems.
206 - Yogesh M Joshi 2014
Aging amorphous polymeric materials undergo free volume relaxation, which causes slowing down of the relaxation dynamics as a function of time. The resulting time dependency poses difficulties in predicting their long time physical behavior. In this work, we apply effective time domain approach to the experimental data on aging amorphous polymers and demonstrate that it enables prediction of long time behavior over the extraordinary time scales. We demonstrate that, unlike the conventional methods, the proposed effective time domain approach can account for physical aging that occurs over the duration of the experiments. Furthermore, this procedure successfully describes time temperature superposition and time stress superposition. It can also allow incorporation of varying dependences of relaxation time on aging time as well as complicated but known deformation history in the same experiments. This work strongly suggests that the effective time domain approach can act as an important tool to analyze the long time physical behavior of aging amorphous polymeric materials. Aging amorphous polymeric materials undergo free volume relaxation, which causes slowing down of the relaxation dynamics as a function of time. The resulting time dependency poses difficulties in predicting their long time physical behavior. In this work, we apply effective time domain approach to the experimental data on aging amorphous polymers and demonstrate that it enables prediction of long time behavior over the extraordinary time scales. We demonstrate that, unlike the conventional methods, the proposed effective time domain approach can account for physical aging that occurs over the duration of the experiments. Furthermore, this procedure successfully describes time temperature superposition and time stress superposition.
The ability to tune the optical response of a material via electrostatic gating is crucial for optoelectronic applications, such as electro-optic modulators, saturable absorbers, optical limiters, photodetectors and transparent electrodes. The band s tructure of single layer graphene (SLG), with zero-gap, linearly dispersive conduction and valence bands, enables an easy control of the Fermi energy E$_F$ and of the threshold for interband optical absorption. Here, we report the tunability of the SLG non-equilibrium optical response in the near-infrared (1000-1700nm/0.729-1.240eV), exploring a range of E$_F$ from -650 to 250 meV by ionic liquid gating. As E$_F$ increases from the Dirac point to the threshold for Pauli blocking of interband absorption, we observe a slow-down of the photobleaching relaxation dynamics, which we attribute to the quenching of optical phonon emission from photoexcited charge carriers. For E$_F$ exceeding the Pauli blocking threshold, photobleaching eventually turns into photoinduced absorption, due to hot electrons excitation increasing SLG absorption. The ability to control both recovery time and sign of nonequilibrium optical response by electrostatic gating makes SLG ideal for tunable saturable absorbers with controlled dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا