ﻻ يوجد ملخص باللغة العربية
Aging amorphous polymeric materials undergo free volume relaxation, which causes slowing down of the relaxation dynamics as a function of time. The resulting time dependency poses difficulties in predicting their long time physical behavior. In this work, we apply effective time domain approach to the experimental data on aging amorphous polymers and demonstrate that it enables prediction of long time behavior over the extraordinary time scales. We demonstrate that, unlike the conventional methods, the proposed effective time domain approach can account for physical aging that occurs over the duration of the experiments. Furthermore, this procedure successfully describes time temperature superposition and time stress superposition. It can also allow incorporation of varying dependences of relaxation time on aging time as well as complicated but known deformation history in the same experiments. This work strongly suggests that the effective time domain approach can act as an important tool to analyze the long time physical behavior of aging amorphous polymeric materials. Aging amorphous polymeric materials undergo free volume relaxation, which causes slowing down of the relaxation dynamics as a function of time. The resulting time dependency poses difficulties in predicting their long time physical behavior. In this work, we apply effective time domain approach to the experimental data on aging amorphous polymers and demonstrate that it enables prediction of long time behavior over the extraordinary time scales. We demonstrate that, unlike the conventional methods, the proposed effective time domain approach can account for physical aging that occurs over the duration of the experiments. Furthermore, this procedure successfully describes time temperature superposition and time stress superposition.
Both structural glasses and disordered crystals are known to exhibit anomalous thermal, vibrational, and acoustic properties at low temperatures or low energies, what is still a matter of lively debate. To shed light on this issue, we studied the hal
Soft glassy materials are out of thermodynamic equilibrium and show time dependent slowing down of the relaxation dynamics. Under such situation these materials follow Boltzmann superposition principle only in the effective time domain, wherein time
For a general class of conducting polymers with arbitrary large unit cell and different on-site Coulomb repulsion values on different type of sites, I demonstrate in exact terms the emergence possibility of an upper, interaction created effective fla
A model is proposed that considers aging and rejuvenation in a soft glassy material as respectively a decrease and an increase in free energy. The aging term is weighted by inverse of characteristic relaxation time suggesting greater mobility of the
Physical properties of out of equilibrium soft materials depend on time as well as deformation history. In this work we propose to transform this major shortcoming into gain by applying controlled deformation field to tailor the rheological propertie