ﻻ يوجد ملخص باللغة العربية
Symmetry and magnitude of spin-orbit torques (SOT), i.e., current-induced torques on the magnetization of systems lacking inversion symmetry, are investigated in a fully relativistic linear response framework based on the Kubo formalism. By applying all space-time symmetry operations contained in the magnetic point group of a solid to the relevant response coefficient, the torkance expressed as torque-current correlation function, restrictions to the shape of the direct and inverse response tensors are obtained. These are shown to apply to the corresponding thermal analogues as well, namely the direct and inverse thermal SOT in response to a temperature gradient or heat current. Using an implementation of the Kubo-Bastin formula for the torkance into a first-principles multiple-scattering Greens function framework and accounting for disorder effects via the so-called coherent potential approximation (CPA), all contributions to the SOT in pure systems, dilute as well as concentrated alloys can be treated on equal footing. This way, material specific values for all torkance tensor elements in the fcc (111) trilayer alloy system Pt | Fe$_x$Co$_{1-x}$ | Cu are obtained over a wide concentration range and discussed in comparison to results for electrical and spin conductivity, as well as to previous work - in particular concerning symmetry w.r.t. magnetization reversal and the nature of the various contributions.
Deterministic magnetization switching using spin-orbit torque (SOT) has recently emerged as an efficient means to electrically control the magnetic state of ultrathin magnets. The SOT switching still lacks in oscillatory switching characteristics ove
Flexible control of magnetization switching by electrical manners is crucial for applications of spin-orbitronics. Besides of a switching current that is parallel to an applied field, a bias current that is normal to the switching current is introduc
Current-induced spin-orbit torques (SOTs) represent one of the most effective ways to manipulate the magnetization in spintronic devices. The orthogonal torque-magnetization geometry, the strong damping, and the large domain wall velocities inherent
By means of density functional theory (DFT) and the generalized gradient approximation (GGA) we present a structural, electronic and magnetic study of FePt, CoPt, FeAu and FePd based L1$_0$ ordered cuboctahedral nanoparticles, with total numbers of a
Current induced spin-orbit torques have been studied in ferromagnetic nanowires made of 20 nm thick Co/Pd multilayers with perpendicular magnetic anisotropy. Using Hall voltage and lock-in measurements, it is found that upon injection of an electric