ﻻ يوجد ملخص باللغة العربية
Assuming that the time-evolution of the self-consistent mean field is determined by five pairs of collective coordinate and collective momentum, we microscopically derive the collective Hamiltonian for low-frequency quadrupole modes of excitation. We show that the five-dimensional collective Schrodinger equation is capable of describing large-amplitude quadrupole shape dynamics seen as shape coexistence/mixing phenomena. We focus on basic ideas and recent advances of the approaches based on the time-dependent mean-field theory, but relations to other time-independent approaches are also briefly discussed.
We discuss the nature of the low-frequency quadrupole vibrations from small-amplitude to large-amplitude regimes. We consider full five-dimensional quadrupole dynamics including three-dimensional rotations restoring the broken symmetries as well as a
Experimental studies of 152Sm using multiple-step Coulomb excitation and inelastic neutron scattering provide key data that clarify the low-energy collective structure of this nucleus. No candidates for two-phonon beta-vibrational states are found. E
We review the recent progress on studying the nuclear collective dynamics by solving the Boltzmann-Uehling-Uhlenbeck (BUU) equation with the lattice Hamiltonian method treating the collision term by the full-ensemble stochastic collision approach. Th
To discuss a possible observation of large-amplitude nuclear shape mixing by nuclear reaction, we employ a simple collective model and evaluate transition densities, with which the differential cross sections are obtained through the microscopic coup
We consider two competing sets of nuclear magic numbers, namely the harmonic oscillator (HO) set (2, 8, 20, 40, 70, 112, 168, 240,...) and the set corresponding to the proxy-SU(3) scheme, possessing shells 0-2, 2-4, 6-12, 14-26, 28-48, 50-80, 82-124,