ﻻ يوجد ملخص باللغة العربية
We consider two competing sets of nuclear magic numbers, namely the harmonic oscillator (HO) set (2, 8, 20, 40, 70, 112, 168, 240,...) and the set corresponding to the proxy-SU(3) scheme, possessing shells 0-2, 2-4, 6-12, 14-26, 28-48, 50-80, 82-124, 126-182, 184-256... The two sets provide 0+ bands with different deformation and band-head energies. We show that for proton (neutron) numbers starting from the regions where the quadrupole-quadrupole interaction, as derived by the HO, becomes weaker than the one obtained in the proxy-SU(3) scheme, to the regions of HO shell closure, the shape coexistence phenomenon may emerge. Our analysis suggests that the possibility for appearance of shape coexistence has to be investigated in the following regions of proton (neutron) numbers: 8, 18-20, 34-40, 60-70, 96-112, 146-168, 210-240,...
The SU(3) irreducible representations (irreps) are characterised by the (lambda, mu) Elliott quantum numbers, which are necessary for the extraction of the nuclear deformation, the energy spectrum and the transition probabilities. These irreps can be
Total-Routhian-Surface calculations have been performed to investigate the shape evolutions of $Asim80$ nuclei, $^{80-84}$Zr, $^{76-80}$Sr and $^{84,86}$Mo. Shape coexistences of spherical, prolate and oblate deformations have been found in these nuc
The shape evolution and shape coexistence phenomena in neutron-rich nuclei at $Napprox60$, including Kr, Sr, Zr, and Mo isotopes, are studied in the covariant density functional theory (DFT) with the new parameter set PC-PK1. Pairing correlations are
We present a symmetry-based approach for prolate-oblate and spherical-prolate-oblate shape coexistence, in the framework of the interacting boson model of nuclei. The proposed Hamiltonian conserves the SU(3) and $overline{rm SU(3)}$ symmetry for the
We use the considered axial deformed relativistic mean field theory to perform systematical calculations for Z=112 and 104 isotopic chains with force parameters NL3, NL-SH and NL-Z2 sets. Three deformed chains (oblate, moderate prolate and super-defo