ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-amplitude quadrupole shape mixing probed by the $(p,p^prime)$ reaction : a model analysis

42   0   0.0 ( 0 )
 نشر من قبل Koichi Sato
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

To discuss a possible observation of large-amplitude nuclear shape mixing by nuclear reaction, we employ a simple collective model and evaluate transition densities, with which the differential cross sections are obtained through the microscopic coupled-channel calculation. Assuming the spherical-to-prolate shape transition, we focus on large-amplitude shape mixing associated with the softness of the collective potential in the $beta$ direction. We introduce a simple model based on the five-dimensional quadrupole collective Hamiltonian, which simulates a chain of isotopes that exhibit spherical-to-prolate shape phase transition. Taking $^{154}$Sm as an example and controlling the model parameters, we study how the large-amplitude shape mixing affects the elastic and inelastic proton scatterings. The calculated results suggest that the inelastic cross section of the $2_2^+$ state tells us an important role of the quadrupole shape mixing.



قيم البحث

اقرأ أيضاً

237 - H. Nagahiro , D. Jido , H. Fujioka 2012
We calculate theoretically the formation spectra of eta(958)-nucleus systems in the (p,d) reaction for the investigation of the in-medium modification of the eta mass. We show the comprehensive numerical calculations based on a simple form of the eta optical potential in nuclei with various potential depths. We conclude that one finds an evidence of possible attractive interaction between eta and nucleus as peak structure appearing around the eta threshold in light nuclei such as 11C when the attractive potential is stronger than 100 MeV and the absorption width is of order of 40 MeV or less. Spectroscopy of the (p,d) reaction is expected to be performed experimentally at existing facilities, such as GSI. We also estimate the contributions from the omega and phi mesons, which have masses close to the eta meson, concluding that the observation of the peak structure of the eta-mesic nuclei is not disturbed although their contributions may not be small.
The formation of $alpha$ particle on nuclear surface has been a fundamental problem since the early age of nuclear physics. It strongly affects the $alpha$ decay lifetime of heavy and superheavy elements, level scheme of light nuclei, and the synthes is of the elements in stars. However, the $alpha$-particle formation in medium-mass nuclei has been poorly known despite its importance. Here, based on the $^{48}{rm Ti}(p,palpha)^{44}{rm Ca}$ reaction analysis, we report that the $alpha$-particle formation in a medium-mass nucleus $^{48}{rm Ti}$ is much stronger than that expected from a mean-field approximation, and the estimated average distance between $alpha$ particle and the residue is as large as 4.5 fm. This new result poses a challenge of describing four nucleon correlations by microscopic nuclear models.
New results are reported from a measurement of $pi^0$ electroproduction near threshold using the $p(e,e^{prime} p)pi^0$ reaction. The experiment was designed to determine precisely the energy dependence of $s-$ and $p-$wave electromagnetic multipoles as a stringent test of the predictions of Chiral Perturbation Theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time, complete coverage of the $phi^*_{pi}$ and $theta^*_{pi}$ angles in the $p pi^0$ center-of-mass was obtained for invariant energies above threshold from 0.5 MeV up to 15 MeV. The 4-momentum transfer $Q^2$ coverage ranges from 0.05 to 0.155 (GeV/c)$^2$ in fine steps. A simple phenomenological analysis of our data shows strong disagreement with $p-$wave predictions from ChPT for $Q^2>0.07$ (GeV/c)$^2$, while the $s-$wave predictions are in reasonable agreement.
In this article a method for lifetime measurements in the sub-picosecond regime via the Doppler-shift attenuation method (DSAM) following the inelastic proton scattering reaction is presented. In a pioneering experiment we extracted the lifetimes of 30 excited low-spin states of $^{96}$Ru, taking advantage of the coincident detection of scattered protons and de-exciting $gamma$-rays as well as the large number of particle and $gamma$-ray detectors provided by the SONIC@HORUS setup at the University of Cologne. The large amount of new experimental data shows that this technique is suited for the measurement of lifetimes of excited low-spin states, especially for isotopes with a low isotopic abundance, where $(n,n^{prime}gamma$) or - in case of investigating dipole excitations - ($gamma,gamma^{prime}$) experiments are not feasible due to the lack of sufficient isotopically enriched target material.
We use power-counting arguments as an organizing principle to apply chiral perturbation theory, including an explicit $Delta$, to the $p p rightarrow p p pi^0$ reaction near threshold. There are two lowest-order leading mechanisms expected to contrib ute to the amplitude with similar magnitudes: an impulse term, and a $Delta$-excitation mechanism. We examine formally sub-leading but potentially large mechanisms, including pion-rescattering and short-ranged contributions. We show that the pion-rescattering contribution is enhanced by off-shell effects and has a sign opposite to that of a recent estimate based on a PCAC pion interpolating field. Our result is that the impulse term interferes destructively with the pion rescattering and $Delta$-excitation terms. In addition, we have modeled the short-ranged interaction using $sigma$ and $omega$ exchange mechanisms. A recoil correction to the impulse approximation is small. The total amplitude obtained including all of these processes is found to yield cross sections substantially smaller than the measured ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا