ﻻ يوجد ملخص باللغة العربية
The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical operators are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfests theorem is shown to be Lie-Poisson for a semidirect-product Lie group, named the `Ehrenfest group. The underlying Poisson structure produces classical and quantum mechanics as special limit cases. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie-Poisson structure associated to another semidirect-product group, which is called the Jacobi group. This structure produces the energy-conserving variant of a class of Gaussian moment models previously appeared in the chemical physics literature.
Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. I
Using a model Hamiltonian for a single-mode electromagnetic field interacting with a nonlinear medium, we show that quantum expectation values of subsystem observables can exhibit remarkably diverse ergodic properties even when the dynamics of the to
We formulate the problem of determining the volume of the set of Gaussian physical states in the framework of information geometry. That is, by considering phase space probability distributions parametrized by the covariances and supplying this resul
We present a procedure for averaging one-parameter random unitary groups and random self-adjoint groups. Central to this is a generalization of the notion of weak convergence of a sequence of measures and the corresponding generalization of the conce
Understanding the asymptotic behavior of physical quantities in the thermodynamic limit is a fundamental problem in statistical mechanics. In this paper, we study how fast the eigenstate expectation values of a local operator converge to a smooth fun