ﻻ يوجد ملخص باللغة العربية
We present a procedure for averaging one-parameter random unitary groups and random self-adjoint groups. Central to this is a generalization of the notion of weak convergence of a sequence of measures and the corresponding generalization of the concept of convergence in distribution. The convergence is established in determination of the sequence of compositions of independent random transformations. When sequences of compositions of independent random transformations of the shift by the Euclidean vector in space, the results obtained coincide with the central limit theorem for the sums independent random vectors. The results are applied to the dynamics of quantum systems arising random quantization of the classical Hamiltonian system.
Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. I
A family of discontinuous symplectic maps on the cylinder is considered. This family arises naturally in the study of nonsmooth Hamiltonian dynamics and in switched Hamiltonian systems. The transformation depends on two parameters and is a canonical
The notion of monodromy was introduced by J. J. Duistermaat as the first obstruction to the existence of global action coordinates in integrable Hamiltonian systems. This invariant was extensively studied since then and was shown to be non-trivial in
We study four particular 3-dimensional natural Hamiltonian systems defined in conformally Euclidean spaces. We prove their superintegrability and we obtain, in the four cases, the maximal number of functionally independent integrals of motion. The tw
This paper studies homogenization of stochastic differential systems. The standard example of this phenomenon is the small mass limit of Hamiltonian systems. We consider this case first from the heuristic point of view, stressing the role of detailed