ﻻ يوجد ملخص باللغة العربية
Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. In this paper we consider this process as an interpolation between the initial and final Hamiltonians. We use the mean value of a single operator to measure the distance between the final state and the ideal ground state. This measure could be taken as the error of adiabatic approximation. We prove under certain conditions, this error can be precisely estimated for an arbitrarily given interpolating function. This error estimation could be used as guideline to induce adiabatic evolution. According to our calculation, the adiabatic approximation error is not proportional to the average speed of the variation of the system Hamiltonian and the inverse of the energy gaps in many cases. In particular, we apply this analysis to an example on which the applicability of the adiabatic theorem is questionable.
The adiabatic theorem refers to a setup where an evolution equation contains a time-dependent parameter whose change is very slow, measured by a vanishing parameter $epsilon$. Under suitable assumptions the solution of the time-inhomogenous equation
We derive an adiabatic theory for a stochastic differential equation, $ varepsilon, mathrm{d} X(s) = L_1(s) X(s), mathrm{d} s + sqrt{varepsilon} L_2(s) X(s) , mathrm{d} B_s, $ under a condition that instantaneous stationary states of $L_1(s)$ are als
The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical operators are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamilt
This paper studies homogenization of stochastic differential systems. The standard example of this phenomenon is the small mass limit of Hamiltonian systems. We consider this case first from the heuristic point of view, stressing the role of detailed
We present a procedure for averaging one-parameter random unitary groups and random self-adjoint groups. Central to this is a generalization of the notion of weak convergence of a sequence of measures and the corresponding generalization of the conce