ترغب بنشر مسار تعليمي؟ اضغط هنا

Bichromatic State-insensitive Trapping of Caesium Atoms

136   0   0.0 ( 0 )
 نشر من قبل Ferruccio Renzoni Dr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

State-insensitive dipole trapping of multilevel atoms can be achieved by an appropriate choice of the wavelength of the trapping laser, so that the interaction with the different transitions results in equal AC Stark shifts for the ground and excited states of interest. However this approach is severely limited by the availability of coherent sources at the required wavelength and of appropriate power. This work investigates state-insensitive trapping of caesium atoms for which the required wavelength of 935.6 nm is inconvenient in terms of experimental realization. Bichromatic state-insensitive trapping is proposed to overcome the lack of suitable laser sources. We first consider pairs of laser wavelengths in the ratio 1:2 and 1:3, as obtained via second- and third- harmonic generation. We found that the wavelength combinations 931.8-1863.6 nm and 927.5-2782.5 nm are suitable for state-insensitive trapping of caesium atoms. In addition, we examine bichromatic state-insensitive trapping produced by pairs of laser wavelengths corresponding to currently available high power lasers. These wavelength pairs were found to be in the range of 585-588 nm and 623-629 for one laser and 1064-1080 nm for the other.



قيم البحث

اقرأ أيضاً

We investigate simultaneous state-insensitive trapping of a mixture of two different atomic species, Caesium and Rubidium. The magic wavelengths of the Caesium and Rubidium atoms are different, $935.6$ nm and $789.9$ nm respectively, thus single-freq uency simultaneous state-insensitive trapping is not possible. We thus identify bichromatic trapping as a viable approach to tune the two magic wavelengths to a common value. Correspondingly, we present several common magic wavelength combinations appropriate for simultaneous state-insensitive trapping of the two atomic species.
Single Cesium atoms are cooled and trapped inside a small optical cavity by way of a novel far-off-resonance dipole-force trap (FORT), with observed lifetimes of 2 to 3 seconds. Trapped atoms are observed continuously via transmission of a strongly c oupled probe beam, with individual events lasting ~ 1 s. The loss of successive atoms from the trap N = 3 -> 2 -> 1 -> 0 is thereby monitored in real time. Trapping, cooling, and interactions with strong coupling are enabled by the FORT potential, for which the center-of-mass motion is only weakly dependent on the atoms internal state.
We trap cold, ground-state, argon atoms in a deep optical dipole trap produced by a build-up cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of co-trapped metastable argon atoms using a new type of parametric loss spectroscopy. Using this technique we also determine the polarizability ratio between the ground and the metastable 4s[3/2]$_2$ state to be 40$pm6$ and find a polarisability of (7.3$pm$1.1) $times$10$^{-39}$ Cm$^2/$V for the metastable state. Finally, Penning and associative losses of metastable atoms, in the absence of light assisted collisions, are determined to be $(3.3pm 0.8) times 10^{-10}$ cm$^3$s$^{-1}$.
We study the dynamic behavior of ultracold neutral atoms in a macroscopic ac electric trap. Confinement in such a trap is achieved by switching between two saddle-point configurations of the electric field. The gradual formation of a stably trapped c loud is observed and the trap performance is studied versus the switching frequency and the symmetry of the switching cycle. Additionally, the electric field in the trap is mapped out by imaging the atom cloud while the fields are still on. Finally, the phase-space acceptance of the trap is probed by introducing a modified switching cycle. The experimental results are reproduced using full three-dimensional trajectory calculations.
170 - Tobias Schaetz 2021
Isolating neutral and charged particles from the environment is essential in precision experiments. For decades, this has been achieved by trapping ions with radio-frequency (rf) fields and neutral particles with optical fields. Recently, trapping of ions by interaction with light has been demonstrated. This might permit combining the advantages of optical trapping and ions. For example, by superimposing optical traps to investigate ensembles of ions and atoms in absence of any radiofrequency fields, as well as to benefit from the versatile and scalable trapping geometries featured by optical lattices. In particular, ions provide individual addressability, electronic and motional degrees of freedom that can be coherently controlled and detected via high fidelity, state-dependent operations. Their long-range Coulomb interaction is significantly larger compared to those of neutral atoms and molecules. This qualifies to study ultra-cold interaction and chemistry of trapped ions and atoms, as well as to provide a novel platform for higher-dimensional experimental quantum simulations. The aim of this topical review is to present the current state of the art and to discuss current challenges and the prospects of the emerging field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا