ﻻ يوجد ملخص باللغة العربية
We study the dynamic behavior of ultracold neutral atoms in a macroscopic ac electric trap. Confinement in such a trap is achieved by switching between two saddle-point configurations of the electric field. The gradual formation of a stably trapped cloud is observed and the trap performance is studied versus the switching frequency and the symmetry of the switching cycle. Additionally, the electric field in the trap is mapped out by imaging the atom cloud while the fields are still on. Finally, the phase-space acceptance of the trap is probed by introducing a modified switching cycle. The experimental results are reproduced using full three-dimensional trajectory calculations.
Three dimensional electrodynamic trapping of neutral atoms has been demonstrated. By applying time-varying inhomogeneous electric fields with micron-sized electrodes, nearly $10^2$ strontium atoms in the $^1S_0$ state have been trapped with a lifetim
We trap neutral ground-state rubidium atoms in a macroscopic trap based on purely electric fields. For this, three electrostatic field configurations are alternated in a periodic manner. The rubidium is precooled in a magneto-optical trap, transferre
We demonstrate the guiding of neutral atoms by the magnetic fields due to microfabricated current-carrying wires on a chip. Atoms are guided along a magnetic field minimum parallel to and above the current-carrying wires. Two waveguide configurations
Isolating neutral and charged particles from the environment is essential in precision experiments. For decades, this has been achieved by trapping ions with radio-frequency (rf) fields and neutral particles with optical fields. Recently, trapping of
Ultracold atoms confined in a dipole trap are submitted to a potential whose depth is proportional to the real part of their dynamic dipole polarizability. The atoms also experience photon scattering whose rate is proportional to the imaginary part o