ﻻ يوجد ملخص باللغة العربية
We trap cold, ground-state, argon atoms in a deep optical dipole trap produced by a build-up cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of co-trapped metastable argon atoms using a new type of parametric loss spectroscopy. Using this technique we also determine the polarizability ratio between the ground and the metastable 4s[3/2]$_2$ state to be 40$pm6$ and find a polarisability of (7.3$pm$1.1) $times$10$^{-39}$ Cm$^2/$V for the metastable state. Finally, Penning and associative losses of metastable atoms, in the absence of light assisted collisions, are determined to be $(3.3pm 0.8) times 10^{-10}$ cm$^3$s$^{-1}$.
We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. Th
A mixed system of cooled and trapped, ions and atoms, paves the way for ion assisted cold chemistry and novel many body studies. Due to the different individual trapping mechanisms, trapped atoms are significantly colder than trapped ions, therefore
Carbon monoxide molecules in their electronic, vibrational, and rotational ground state are highly attractive for trapping experiments. The optical or ac electric traps that can be envisioned for these molecules will be very shallow, however, with de
We propose and experimentally investigate a scheme for narrow-line cooling of KRb molecules in the rovibrational ground state. We show that the spin-forbidden $mathrm{X^1Sigma^+} rightarrow mathrm{b^3Pi_{0^+}}$ transition of KRb is ideal for realizin
Ultracold CH radicals promise a fruitful testbed for probing quantum-state controllable organic chemistry. In this work, we calculate CH vibrational branching ratios (VBRs) and rotational branching ratios (RBRs) with ground state mixing. We subsequen