ﻻ يوجد ملخص باللغة العربية
I discuss the relationship between edge exponents in the statistics of work done, dynamical phase transitions, and the role of different kinds of excitations appearing when a non-equilibrium protocol is performed on a closed, gapped, one-dimensional system. I show that the edge exponent in the probability density function of the work is insensitive to the presence of interactions and can take only one of three values: +1/2, -1/2 and -3/2. It also turns out that there is an interesting interplay between spontaneous symmetry breaking or the presence of bound states and the exponents. For instantaneous global protocols, I find that the presence of the one-particle channel creates dynamical phase transitions in the time evolution.
In self-gravitating stars, two dimensional or geophysical flows and in plasmas, long range interactions imply a lack of additivity for the energy; as a consequence, the usual thermodynamic limit is not appropriate. However, by contrast with many clai
Most common types of symmetry breaking in quasi-one-dimensional electronic systems possess a combined manifold of states degenerate with respect to both the phase $theta$ and the amplitude $A$ sign of the order parameter $Aexp(itheta)$. These degrees
When a second-order phase transition is crossed at fine rate, the evolution of the system stops being adiabatic as a result of the critical slowing down in the neighborhood of the critical point. In systems with a topologically nontrivial vacuum mani
Motivated by experiments on splitting one-dimensional quasi-condensates, we study the statistics of the work done by a quantum quench in a bosonic system. We discuss the general features of the probability distribution of the work and focus on its be
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea