ترغب بنشر مسار تعليمي؟ اضغط هنا

Causality and non-equilibrium second-order phase transitions in inhomogeneous systems

98   0   0.0 ( 0 )
 نشر من قبل Adolfo del Campo
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When a second-order phase transition is crossed at fine rate, the evolution of the system stops being adiabatic as a result of the critical slowing down in the neighborhood of the critical point. In systems with a topologically nontrivial vacuum manifold, disparate local choices of the ground state lead to the formation of topological defects. The universality class of the transition imprints a signature on the resulting density of topological defects: It obeys a power law in the quench rate, with an exponent dictated by a combination of the critical exponents of the transition. In inhomogeneous systems the situation is more complicated, as the spontaneous symmetry breaking competes with bias caused by the influence of the nearby regions that already chose the new vacuum. As a result, the choice of the broken symmetry vacuum may be inherited from the neighboring regions that have already entered the new phase. This competition between the inherited and spontaneous symmetry breaking enhances the role of causality, as the defect formation is restricted to a fraction of the system where the front velocity surpasses the relevant sound velocity and phase transition remains effectively homogeneous. As a consequence, the overall number of topological defects can be substantially suppressed. When the fraction of the system is small, the resulting total number of defects is still given by a power law related to the universality class of the transition, but exhibits a more pronounced dependence on the quench rate. This enhanced dependence complicates the analysis but may also facilitate experimental test of defect formation theories.

قيم البحث

اقرأ أيضاً

A framework is presented for carrying out simulations of equilibrium systems in the microcanonical ensemble using annealing in an energy ceiling. The framework encompasses an equilibrium version of simulated annealing, population annealing and hybrid algorithms that interpolate between these extremes. These equilibrium, microcanonical annealing algorithms are applied to the thermal first-order transition in the 20-state, two-dimensional Potts model. All of these algorithms are observed to perform well at the first-order transition though for the system sizes studied here, equilibrium simulated annealing is most efficient.
The extraction of membrane tubes by molecular motors is known to play an important role for the transport properties of eukaryotic cells. By studying a generic class of models for the tube extraction, we discover a rich phase diagram. In particular w e show that the density of motors along the tube can exhibit shocks, inverse shocks and plateaux, depending on parameters which could in principle be probed experimentally. In addition the phase diagram exhibits interesting reentrant behavior.
127 - P. Cats , A. Quelle , O. Viyuela 2017
We find a series of topological phase transitions of increasing order, beyond the more standard second-order phase transition in a one-dimensional topological superconductor. The jumps in the order of the transitions depend on the range of the pairin g interaction, which is parametrized by an algebraic decay with exponent $alpha$. Remarkably, in the limit $alpha = 1$ the order of the topological transition becomes infinite. We compute the critical exponents for the series of higher-order transitions in exact form and find that they fulfill the hyperscaling relation. We also study the critical behaviour at the boundary of the system and discuss potential experimental platforms of magnetic atoms in superconductors.
70 - Freddy Bouchet 2008
In self-gravitating stars, two dimensional or geophysical flows and in plasmas, long range interactions imply a lack of additivity for the energy; as a consequence, the usual thermodynamic limit is not appropriate. However, by contrast with many clai ms, the equilibrium statistical mechanics of such systems is a well understood subject. In this proceeding, we explain briefly the classical approach to equilibrium and non equilibrium statistical mechanics for these systems, starting from first principles. We emphasize recent and new results, mainly a classification of equilibrium phase transitions, new unobserved equilibrium phase transition, and out of equilibrium phase transitions. We briefly discuss what we consider as challenges in this field.
We study information theoretic geometry in time dependent quantum mechanical systems. First, we discuss global properties of the parameter manifold for two level systems exemplified by i) Rabi oscillations and ii) quenching dynamics of the XY spin ch ain in a transverse magnetic field, when driven across anisotropic criticality. Next, we comment upon the nature of the geometric phase from classical holonomy analyses of such parameter manifolds. In the context of the transverse XY model in the thermodynamic limit, our results are in contradiction to those in the existing literature, and we argue why the issue deserves a more careful analysis. Finally, we speculate on a novel geometric phase in the model, when driven across a quantum critical line.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا