ﻻ يوجد ملخص باللغة العربية
Charge-state-resolved ion energy-time-distributions of pulsed Cu arc plasma were obtained by using direct (time dependent) acquisition of the ion detection signal from a commercial ion mass-per-charge and energy-per-charge analyzer. We find a shift of energies of Cu2+, Cu3+ and Cu4+ ions to lower values during the first few hundred microseconds after arc ignition, which is evidence for particle collisions in the plasma. The generation of Cu1+ ions in the later part of the pulse, measured by the increase of Cu1+ signal intensity and an associated slight reduction of the mean charge state point to charge exchange reactions between ions and neutrals. At the very beginning of the pulse, when the plasma expands into vacuum and the plasma potential strongly fluctuates, ions with much higher energy (over 200 eV) were observed. Early in the pulse, the ion energies observed are approximately proportional to the ion charge state, and we conclude that the acceleration mechanism is primarily based on acceleration in an electric field. This field is directed away from the cathode, indicative for a potential hump. Measurements by a floating probe suggest that potential structures travel and ions moving in the traveling field can gain high energies up to a few hundred electron-volt. Later in the pulse, the approximate proportionality is lost, which is either related to increased smearing out of different energies due to collisions with neutrals, and/or a change of the acceleration character from electrostatic to gas-dynamic, i.e., dominated by pressure gradient.
In this work, Rayleigh microwave scattering was utilized to measure the electron number density produced by nanosecond high voltage breakdown in air between two electrodes in a pin-to-pin configuration (peak voltage 26 kV and pulse duration 55 ns). T
We report on time-resolved measurements of electron number density by continuous-wave laser absorption in a low-energy nanosecond-scale laser-produced spark in atmospheric pressure air. Laser absorption is a result of free-free and bound-free electro
The Neutron Spin Echo (NSE) variant MIEZE (Modulation of IntEnsity by Zero Effort), where all beam manipulations are performed before the sample position, offers the possibility to perform low background SANS measurements in strong magnetic fields an
A two-fluid flowing plasma model is applied to describe the plasma rotation and resulted instability evolution in magnetically enhanced vacuum arc thruster (MEVAT). Typical experimental parameters are employed, including plasma density, equilibrium m
The highly advanced treatment of surfaces as etching and deposition is mainly enabled by the extraordinary properties of technological plasmas. The primary factors that influence these processes are the flux and the energy of various species, particu