ﻻ يوجد ملخص باللغة العربية
The Neutron Spin Echo (NSE) variant MIEZE (Modulation of IntEnsity by Zero Effort), where all beam manipulations are performed before the sample position, offers the possibility to perform low background SANS measurements in strong magnetic fields and depolarising samples. However, MIEZE is sensitive to differences DeltaL in the length of neutron flight paths through the instrument and the sample. In this article, we discuss the major influence of DeltaL on contrast reduction of MIEZE measurements and its minimisation. Finally we present a design case for enhancing a small-angle neutron scattering (SANS) instrument at the planned European Spallation Source (ESS) in Lund, Sweden, using a combination of MIEZE and other TOF options, such as TISANE offering time windows from ns to minutes. The proposed instrument allows studying fluctuations in depolarizing samples, samples exposed to strong magnetic fields, and spin-incoherently scattering samples in a straightforward way up to time scales of mus at momentum transfers up to 0.01 {AA}-1, while keeping the instrumental effort and costs low.
Laser spectroscopic studies on minute samples of exotic radioactive nuclei require very efficient experimental techniques. In addition, high resolving powers are required to allow extraction of nu- clear structure information. Here we demonstrate tha
This paper presents results obtained with the combined CALICE Scintillator Electromagnetic Calorimeter, Analogue Hadronic Calorimeter and Tail Catcher & Muon Tracker, three high granularity scintillator-SiPM calorimeter prototypes. The response of th
We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley Natio
Ultrahigh-resolution fiber-optic sensing has been demonstrated with a meter-long, high-finesse fiber Fabry-Perot interferometer (FFPI). The main technical challenge of large, environment-induced resonance frequency drift is addressed by locking the i
We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-bas