ﻻ يوجد ملخص باللغة العربية
The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet it only achieves first-order spatial accuracy near embedded boundaries. In this paper, we introduce a new high-order numerical method which we call the Immersed Boundary Smooth Extension (IBSE) method. The IBSE method achieves high-order accuracy by smoothly extending the unknown solution of the PDE from a given smooth domain to a larger computational domain, enabling the use of simple Cartesian-grid discretizations (e.g. Fourier spectral methods). The method preserves much of the flexibility and robustness of the original IB method. In particular, it requires minimal geometric information to describe the boundary and relies only on convolution with regularized delta-functions to communicate information between the computational grid and the boundary. We present a fast algorithm for solving elliptic equations, which forms the basis for simple, high-order implicit-time methods for parabolic PDE and implicit-explicit methods for related nonlinear PDE. We apply the IBSE method to solve the Poisson, heat, Burgers, and Fitzhugh-Nagumo equations, and demonstrate fourth-order pointwise convergence for Dirichlet problems and third-order pointwise convergence for Neumann problems.
The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet for fluid problems it only achieves first-order spatial accuracy near embedded boundaries for the velocity field and fails to con
The dissolution of solids has created spectacular geomorphologies ranging from centimeter-scale cave scallops to the kilometer-scale stone forests of China and Madagascar. Mathematically, dissolution processes are modeled by a Stefan problem, which d
In this paper a method is presented for evaluating the convolution of the Greens function for the Laplace operator with a specified function $rho(vec x)$ at all grid points in a rectangular domain $Omega subset {mathrm R}^{d}$ ($d = 1,2,3$), i.e. a s
In this paper, we study arbitrary order extended finite element (XFE) methods based on two discontinuous Galerkin (DG) schemes in order to solve elliptic interface problems in two and three dimensions. Optimal error estimates in the piecewise $H^1$-n
A novel sharp interface ghost-cell based immersed boundary method has been proposed and its parameters have been optimized against an analytical model in diffusion applications. The proposed embedded constrained moving least-squares (ECMLS) algorithm