ﻻ يوجد ملخص باللغة العربية
One of the challenge of future muon colliders is the production of muon beams carrying high phase space densities. In particular the muon beam normalised transverse emittance is a relevant figure of merit to meet luminosity requests. A typical issue impacting the achieved transverse emittance in muon collider schemes so far considered is the phase space dilution caused by coulomb interaction of primary particles propagating into the target where muons are generated. In this study we present a new scheme for muon beam generation occurring in vacuum by interactions of electron and photon beams. Setting the center of mass energy at about twice the threshold (i.e. around $350$ MeV) the normalised emittance of the muon beam generated via muon pair production reaction ($e^-+gamma rightarrow e^-+mu^+/mu^-$) is largely independent on the emittance of the colliding electron beam and is set basically by the excess of transverse momentum in the muon pair creation. In absence of any other mechanism for emittance dilution, the resulting muon beam, with energy in the range of few tens of GeV, is characterised by an ultra-low normalised transverse rms emittance of a few nm rad, corresponding to a geometrical emittance below $10$ pm rad. This opens the way to a new muon collider paradigm based on muon sources conceived with primary colliding beams delivered by $100$ GeV-class energy recovery linacs interacting with hard-X ray free electron lasers. The challenge is to achieve the requested luminosity of the muon collider adopting a strategy of low muon fluxes/currents combined to ultra-low emittances, so to largely reduce also the levels of muon beam-induced background.
Present availability of high brilliance photon beams as those produced by X-ray Free Electron Lasers in combination with intense TeV proton beams typical of the Large Hadron Collider makes it possible to conceive the generation of pion beams via phot
We discussed the photoproduction of pair of charged particles $abar{a}quad (a=e,mu,pi)$ as well as the double photon emission processes off an electron accounting for the polarization of colliding particles. In the kinematics when all the particles c
We propose a novel scheme for final muon ionization cooling with quadrupole doublets followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells a
A new scheme to produce very low emittance muon beams using a positron beam of about 45~GeV interacting on electrons on target is presented. One of the innovative topics to be investigated is the behaviour of the positron beam stored in a low emitt
We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted