ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin and Relativistic Phenomena Around Black Holes

126   0   0.0 ( 0 )
 نشر من قبل Jon M. Miller
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Brenneman




اسأل ChatGPT حول البحث

Since the seminal work of Penrose (1969) and Blandford & Znajek (1977), it has been realized that black hole spin may be an important energy source in astrophysics. The radio-loud/radio-quiet dichotomy in the AGN population is usually attributed to differences in black hole spin, with correlations between black hole spin and host galaxy morphology being hypothesized in order to explain why radio-loud AGN occur in early-type galaxies. X-ray observations are uniquely able to answer: Does black hole spin play a crucial role in powering relativistic jets such as those seen from radio-loud active galactic nuclei (AGN), Galactic microquasars, and Gamma-Ray Bursts? Indeed, the importance of black hole spin goes beyond its role as a possible power source: the spin of a supermassive black hole is a fossil record of its formation and subsequent growth history.



قيم البحث

اقرأ أيضاً

Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and co rresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy-dependence of the high frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We consider how these signals can be studied in the future to carry out X-ray reverberation mapping of the regions closest to black holes.
The merger rate of stellar-mass black hole binaries (sBHBs) inferred by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) suggests the need for an efficient source of sBHB formation. Active galactic nucleus (AGN) disks are a pro mising location for the formation of these sBHBs, as well as binaries of other compact objects, because of powerful torques exerted by the gas disk. These gas torques cause orbiting compact objects to migrate towards regions in the disk where inward and outward torques cancel, known as migration traps. We simulate the migration of stellar mass black holes in an example of a model AGN disk, using an augmented N-body code that includes analytic approximations to migration torques, stochastic gravitational forces exerted by turbulent density fluctuations in the disk, and inclination and eccentricity dampening produced by passages through the gas disk, in addition to the standard gravitational forces between objects. We find that sBHBs form rapidly in our model disk as stellar-mass black holes migrate towards the migration trap. These sBHBs are likely to subsequently merge on short time-scales. The process continues, leading to the build-up of a population of over-massive stellar-mass black holes. The formation of sBHBs in AGN disks could contribute significantly to the sBHB merger rate inferred by LIGO.
The masses, rates, and spins of merging stellar-mass binary black holes (BBHs) detected by aLIGO and Virgo provide challenges to traditional BBH formation and merger scenarios. An active galactic nucleus (AGN) disk provides a promising additional mer ger channel, because of the powerful influence of the gas that drives orbital evolution, makes encounters dissipative, and leads to migration. Previous work showed that stellar mass black holes (sBHs) in an AGN disk migrate to regions of the disk, known as migration traps, where positive and negative gas torques cancel out, leading to frequent BBH formation. Here we build on that work by simulating the evolution of additional sBHs that enter the inner disk by either migration or inclination reduction. We also examine whether the BBHs formed in our models have retrograde or prograde orbits around their centers of mass with respect to the disk, determining the orientation, relative to the disk, of the spin of the merged BBHs. Orbiters entering the inner disk form BBHs with sBHs on resonant orbits near the migration trap. When these sBHs reach ~80 Msun, they form BBHs with sBHs in the migration trap, which over 10 Myr reach ~1000 Msun. We find 68% of the BBHs in our simulation orbit in the retrograde direction, which implies BBHs in our merger channel will have small dimensionless aligned spins, chi_eff. Overall, our models produce BBHs that resemble both the majority of BBH mergers detected thus far (0.66 to 120 Gpc^-3 yr^-1 ) and two recent unusual detections, GW190412 (~0.3 Gpc^-3 yr^-1 ) and GW190521 (~0.1 Gpc^-3 yr^-1 ).
We study the circularization of tidally disrupted stars on bound orbits around spinning supermassive black holes by performing three-dimensional smoothed particle hydrodynamic simulations with Post-Newtonian corrections. Our simulations reveal that d ebris circularization depends sensitively on the efficiency of radiative cooling. There are two stages in debris circularization if radiative cooling is inefficient: first, the stellar debris streams self-intersect due to relativistic apsidal precession; shocks at the intersection points thermalize orbital energy and the debris forms a geometrically thick, ring-like structure around the black hole. The ring rapidly spreads via viscous diffusion, leading to the formation of a geometrically thick accretion disk. In contrast, if radiative cooling is efficient, the stellar debris circularizes due to self-intersection shocks and forms a geometrically thin ring-like structure. In this case, the dissipated energy can be emitted during debris circularization as a precursor to the subsequent tidal disruption flare. The possible radiated energy is up to ~2*10^{52} erg for a 1 Msun star orbiting a 10^6 Msun black hole. We also find that a retrograde (prograde) black hole spin causes the shock-induced circularization timescale to be shorter (longer) than that of a non-spinning black hole in both cooling cases. The circularization timescale is remarkably long in the radiatively efficient cooling case, and is also sensitive to black hole spin. Specifically, Lense-Thirring torques cause dynamically important nodal precession, which significantly delays debris circularization. On the other hand, nodal precession is too slow to produce observable signatures in the radiatively inefficient case. We also discuss the relationship between our simulations and the parabolic TDEs that are characteristic of most stellar tidal disruptions.
We consider a temporal response of relativistically broadened line spectrum of iron from black hole accretion irradiated by an X-ray echo under strong gravity. The physical condition of accreting gas is numerically calculated in the context of genera l relativistic hydrodynamics under steady-state, axisymmetry in Kerr geometry. With the onset of a point-like X-ray flare of a short finite duration just above the accretion surface, the gas is assumed to be ionized to produce a neutral iron fluorescent line. Using a fully relativistic ray-tracing approach, the response of line photons due to the X-ray illumination is traced as a function of time and energy for different source configurations around sw and Kerr black holes. Our calculations show that the X-ray echo on the accretion surface clearly imprints a characteristic time-variability in the line spectral features depending on those parameters. Simulated line profiles, aimed for the future microcalorimeter missions of large collecting area such as {it Athena}/X-IFU for typical radio-quiet Seyfert galaxies, are presented to demonstrate that state-of-the-art new observations could differentiate various source parameters by such an X-ray tomographic line reverberation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا