ﻻ يوجد ملخص باللغة العربية
Since the seminal work of Penrose (1969) and Blandford & Znajek (1977), it has been realized that black hole spin may be an important energy source in astrophysics. The radio-loud/radio-quiet dichotomy in the AGN population is usually attributed to differences in black hole spin, with correlations between black hole spin and host galaxy morphology being hypothesized in order to explain why radio-loud AGN occur in early-type galaxies. X-ray observations are uniquely able to answer: Does black hole spin play a crucial role in powering relativistic jets such as those seen from radio-loud active galactic nuclei (AGN), Galactic microquasars, and Gamma-Ray Bursts? Indeed, the importance of black hole spin goes beyond its role as a possible power source: the spin of a supermassive black hole is a fossil record of its formation and subsequent growth history.
Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and co
The merger rate of stellar-mass black hole binaries (sBHBs) inferred by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) suggests the need for an efficient source of sBHB formation. Active galactic nucleus (AGN) disks are a pro
The masses, rates, and spins of merging stellar-mass binary black holes (BBHs) detected by aLIGO and Virgo provide challenges to traditional BBH formation and merger scenarios. An active galactic nucleus (AGN) disk provides a promising additional mer
We study the circularization of tidally disrupted stars on bound orbits around spinning supermassive black holes by performing three-dimensional smoothed particle hydrodynamic simulations with Post-Newtonian corrections. Our simulations reveal that d
We consider a temporal response of relativistically broadened line spectrum of iron from black hole accretion irradiated by an X-ray echo under strong gravity. The physical condition of accreting gas is numerically calculated in the context of genera