ﻻ يوجد ملخص باللغة العربية
Riemann manifold Hamiltonian Monte Carlo (RMHMC) has the potential to produce high-quality Markov chain Monte Carlo-output even for very challenging target distributions. To this end, a symmetric positive definite scaling matrix for RMHMC, which derives, via a modified Cholesky factorization, from the potentially indefinite negative Hessian of the target log-density is proposed. The methodology is able to exploit the sparsity of the Hessian, stemming from conditional independence modeling assumptions, and thus admit fast implementation of RMHMC even for high-dimensional target distributions. Moreover, the methodology can exploit log-concave conditional target densities, often encountered in Bayesian hierarchical models, for faster sampling and more straight forward tuning. The proposed methodology is compared to alternatives for some challenging targets, and is illustrated by applying a state space model to real data.
Hamiltonian Monte Carlo (HMC) has been widely adopted in the statistics community because of its ability to sample high-dimensional distributions much more efficiently than other Metropolis-based methods. Despite this, HMC often performs sub-optimall
Dynamically rescaled Hamiltonian Monte Carlo (DRHMC) is introduced as a computationally fast and easily implemented method for performing full Bayesian analysis in hierarchical statistical models. The method relies on introducing a modified parameter
Continuous time Hamiltonian Monte Carlo is introduced, as a powerful alternative to Markov chain Monte Carlo methods for continuous target distributions. The method is constructed in two steps: First Hamiltonian dynamics are chosen as the determinist
We explore the construction of new symplectic numerical integration schemes to be used in Hamiltonian Monte Carlo and study their efficiency. Two integration schemes from Blanes et al. (2014), and a new scheme based on optimal acceptance probability,
Bayesian inference for nonlinear diffusions, observed at discrete times, is a challenging task that has prompted the development of a number of algorithms, mainly within the computational statistics community. We propose a new direction, and accompan