ﻻ يوجد ملخص باللغة العربية
The virtualization and softwarization of modern computer networks enables the definition and fast deployment of novel network services called service chains: sequences of virtualized network functions (e.g., firewalls, caches, traffic optimizers) through which traffic is routed between source and destination. This paper attends to the problem of admitting and embedding a maximum number of service chains, i.e., a maximum number of source-destination pairs which are routed via a sequence of to-be-allocated, capacitated network functions. We consider an Online variant of this maximum Service Chain Embedding Problem, short OSCEP, where requests arrive over time, in a worst-case manner. Our main contribution is a deterministic O(log L)-competitive online algorithm, under the assumption that capacities are at least logarithmic in L. We show that this is asymptotically optimal within the class of deterministic and randomized online algorithms. We also explore lower bounds for offline approximation algorithms, and prove that the offline problem is APX-hard for unit capacities and small L > 2, and even Poly-APX-hard in general, when there is no bound on L. These approximation lower bounds may be of independent interest, as they also extend to other problems such as Virtual Circuit Routing. Finally, we present an exact algorithm based on 0-1 programming, implying that the general offline SCEP is in NP and by the above hardness results it is NP-complete for constant L.
One of the most important aspects of moving forward to the next generation networks like 5G/6G, is to enable network slicing in an efficient manner. The most challenging issues are the uncertainties in consumption and communication demand. Because th
Network Function Virtualization (NFV) on Software-Defined Networks (SDN) can effectively optimize the allocation of Virtual Network Functions (VNFs) and the routing of network flows simultaneously. Nevertheless, most previous studies on NFV focus on
Control of wireless multihop networks, while simultaneously meeting end-to-end mean delay requirements of different flows is a challenging problem. Additionally, distributed computation of control parameters adds to the complexity. Using the notion o
The emerging paradigm of network function virtualization advocates deploying virtualized network functions (VNF) on standard virtualization platforms for significant cost reduction and management flexibility. There have been system designs for managi
Recently, much effort has been devoted by researchers from both academia and industry to develop novel congestion control methods. LearningCC is presented in this letter, in which the congestion control problem is solved by reinforce learning approac