ﻻ يوجد ملخص باللغة العربية
One of the most important aspects of moving forward to the next generation networks like 5G/6G, is to enable network slicing in an efficient manner. The most challenging issues are the uncertainties in consumption and communication demand. Because the slices arrive to the network in different times and their lifespans vary, the solution should dynamically react to online slice requests. The joint problem of online admission control and resource allocation considering the energy consumption is formulated mathematically. It is based on Integer Linear Programming (ILP), where, the $Gamma$- Robustness concept is exploited to overcome Virtual Links (VL) bandwidths and Virtual Network Functions (VNF) workloads uncertainties. Then, an optimal algorithm that adopts this mathematical model is proposed. To overcome the high computational complexity of ILP which is NP-hard, a new heuristic algorithm is developed. The assessments results indicate that the efficiency of heuristic is vital in increasing the accepted requests count, decreasing power consumption and providing adjustable tolerance vs. the VNFs workloads and VLs traffics uncertainties, separately. Considering the acceptance ratio and power consumption that constitute the two important components of the objective function, heuristic has about 7% and 12% optimality gaps, respectively, while being about 30X faster than that of optimal algorithm.
Network slicing has been considered as one of the key enablers for 5G to support diversified services and application scenarios. This paper studies the distributed network slicing utilizing both the spectrum resource offered by communication network
The virtualization and softwarization of modern computer networks enables the definition and fast deployment of novel network services called service chains: sequences of virtualized network functions (e.g., firewalls, caches, traffic optimizers) thr
Network slicing is born as an emerging business to operators, by allowing them to sell the customized slices to various tenants at different prices. In order to provide better-performing and cost-efficient services, network slicing involves challengi
We study online resource allocation in a cloud computing platform, through a posted pricing mechanism: The cloud provider publishes a unit price for each resource type, which may vary over time; upon arrival at the cloud system, a cloud user either t
In the last few years there has been significant growth in the area of wireless communication. IEEE 802.16/WiMAX is the network which is designed for providing high speed wide area broadband wireless access; WiMAX is an emerging wireless technology f