ﻻ يوجد ملخص باللغة العربية
Recently, much effort has been devoted by researchers from both academia and industry to develop novel congestion control methods. LearningCC is presented in this letter, in which the congestion control problem is solved by reinforce learning approach. Instead of adjusting the congestion window with fixed policy, there are serval options for an endpoint to choose. To predict the best option is a hard task. Each option is mapped as an arm of a bandit machine. The endpoint can learn to determine the optimal choice through trial and error method. Experiments are performed on ns3 platform to verify the effectiveness of LearningCC by comparing with other benchmark algorithms. Results indicate it can achieve lower transmission delay than loss based algorithms. Especially, we found LearningCC makes significant improvement in link suffering from random loss.
Decades of research on Internet congestion control (CC) has produced a plethora of algorithms that optimize for different performance objectives. Applications face the challenge of choosing the most suitable algorithm based on their needs, and it tak
Bandwidth estimation and congestion control for real-time communications (i.e., audio and video conferencing) remains a difficult problem, despite many years of research. Achieving high quality of experience (QoE) for end users requires continual upd
Due to the presence of buffers in the inner network nodes, each congestion event leads to buffer queueing and thus to an increasing end-to-end delay. In the case of delay sensitive applications, a large delay might not be acceptable and a solution to
Congestion control and avoidance in Wireless Sensor Networks (WSNs) is a subject that has attracted a lot of research attention in the last decade. Besides rate and resource control, the utilization of mobile nodes has also been suggested as a way to
In Future Internet it is possible to change elements of congestion control in order to eliminate jitter and batch loss caused by the current control mechanisms based on packet loss events. We investigate the fundamental problem of adjusting sending r