ترغب بنشر مسار تعليمي؟ اضغط هنا

Methodology and convergence rates for functional linear regression

501   0   0.0 ( 0 )
 نشر من قبل Peter Hall
 تاريخ النشر 2007
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In functional linear regression, the slope ``parameter is a function. Therefore, in a nonparametric context, it is determined by an infinite number of unknowns. Its estimation involves solving an ill-posed problem and has points of contact with a range of methodologies, including statistical smoothing and deconvolution. The standard approach to estimating the slope function is based explicitly on functional principal components analysis and, consequently, on spectral decomposition in terms of eigenvalues and eigenfunctions. We discuss this approach in detail and show that in certain circumstances, optimal convergence rates are achieved by the PCA technique. An alternative approach based on quadratic regularisation is suggested and shown to have advantages from some points of view.



قيم البحث

اقرأ أيضاً

213 - Yehua Li , Tailen Hsing 2012
We consider nonparametric estimation of the mean and covariance functions for functional/longitudinal data. Strong uniform convergence rates are developed for estimators that are local-linear smoothers. Our results are obtained in a unified framework in which the number of observations within each curve/cluster can be of any rate relative to the sample size. We show that the convergence rates for the procedures depend on both the number of sample curves and the number of observations on each curve. For sparse functional data, these rates are equivalent to the optimal rates in nonparametric regression. For dense functional data, root-n rates of convergence can be achieved with proper choices of bandwidths. We further derive almost sure rates of convergence for principal component analysis using the estimated covariance function. The results are illustrated with simulation studies.
In this paper we consider the linear regression model $Y =S X+varepsilon $ with functional regressors and responses. We develop new inference tools to quantify deviations of the true slope $S$ from a hypothesized operator $S_0$ with respect to the Hi lbert--Schmidt norm $| S- S_0|^2$, as well as the prediction error $mathbb{E} | S X - S_0 X |^2$. Our analysis is applicable to functional time series and based on asymptotically pivotal statistics. This makes it particularly user friendly, because it avoids the choice of tuning parameters inherent in long-run variance estimation or bootstrap of dependent data. We also discuss two sample problems as well as change point detection. Finite sample properties are investigated by means of a simulation study. Mathematically our approach is based on a sequential version of the popular spectral cut-off estimator $hat S_N$ for $S$. It is well-known that the $L^2$-minimax rates in the functional regression model, both in estimation and prediction, are substantially slower than $1/sqrt{N}$ (where $N$ denotes the sample size) and that standard estimators for $S$ do not converge weakly to non-degenerate limits. However, we demonstrate that simple plug-in estimators - such as $| hat S_N - S_0 |^2$ for $| S - S_0 |^2$ - are $sqrt{N}$-consistent and its sequenti
136 - Qiyang Han , Jon A. Wellner 2017
We study the performance of the Least Squares Estimator (LSE) in a general nonparametric regression model, when the errors are independent of the covariates but may only have a $p$-th moment ($pgeq 1$). In such a heavy-tailed regression setting, we s how that if the model satisfies a standard `entropy condition with exponent $alpha in (0,2)$, then the $L_2$ loss of the LSE converges at a rate begin{align*} mathcal{O}_{mathbf{P}}big(n^{-frac{1}{2+alpha}} vee n^{-frac{1}{2}+frac{1}{2p}}big). end{align*} Such a rate cannot be improved under the entropy condition alone. This rate quantifies both some positive and negative aspects of the LSE in a heavy-tailed regression setting. On the positive side, as long as the errors have $pgeq 1+2/alpha$ moments, the $L_2$ loss of the LSE converges at the same rate as if the errors are Gaussian. On the negative side, if $p<1+2/alpha$, there are (many) hard models at any entropy level $alpha$ for which the $L_2$ loss of the LSE converges at a strictly slower rate than other robust estimators. The validity of the above rate relies crucially on the independence of the covariates and the errors. In fact, the $L_2$ loss of the LSE can converge arbitrarily slowly when the independence fails. The key technical ingredient is a new multiplier inequality that gives sharp bounds for the `multiplier empirical process associated with the LSE. We further give an application to the sparse linear regression model with heavy-tailed covariates and errors to demonstrate the scope of this new inequality.
The dual problem of testing the predictive significance of a particular covariate, and identification of the set of relevant covariates is common in applied research and methodological investigations. To study this problem in the context of functiona l linear regression models with predictor variables observed over a grid and a scalar response, we consider basis expansions of the functional covariates and apply the likelihood ratio test. Based on p-values from testing each predictor, we propose a new variable selection method, which is consistent in selecting the relevant predictors from set of available predictors that is allowed to grow with the sample size n. Numerical simulations suggest that the proposed variable selection procedure outperforms existing methods found in the literature. A real dataset from weather stations in Japan is analyzed.
126 - Rui Tuo , Yan Wang , C. F. Jeff Wu 2020
Kernel ridge regression is an important nonparametric method for estimating smooth functions. We introduce a new set of conditions, under which the actual rates of convergence of the kernel ridge regression estimator under both the L_2 norm and the n orm of the reproducing kernel Hilbert space exceed the standard minimax rates. An application of this theory leads to a new understanding of the Kennedy-OHagan approach for calibrating model parameters of computer simulation. We prove that, under certain conditions, the Kennedy-OHagan calibration estimator with a known covariance function converges to the minimizer of the norm of the residual function in the reproducing kernel Hilbert space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا