ﻻ يوجد ملخص باللغة العربية
Precise control of particle positioning is desirable in many optical propulsion and sorting applications. Here, we develop an integrated platform for particle manipulation consisting of a combined optical nanofibre and optical tweezers system. Individual silica microspheres were introduced to the nanofibre at arbitrary points using the optical tweezers, thereby producing pronounced dips in the fibre transmission. We show that such consistent and reversible transmission modulations depend on both particle and fibre diameter, and can be used as a reference point for in situ nanofibre or particle size measurement. Thence, we combine scanning electron microscope (SEM) size measurements with nanofibre transmission data to provide calibration for particle-based fibre assessment. This integrated optical platform provides a method for selective evanescent field manipulation of micron-sized particles and facilitates studies of optical binding and light-particle interaction dynamics.
We demonstrate a lock-in particle tracking scheme in optical tweezers based on stroboscopic modulation of an illuminating optical field. This scheme is found to evade low frequency noise sources while otherwise producing an equivalent position measur
We propose to use optical tweezers to probe the Casimir interaction between microspheres inside a liquid medium for geometric aspect ratios far beyond the validity of the widely employed proximity force approximation. This setup has the potential for
A setup is proposed to enhance tracking of very small particles, by using optical tweezers embedded within a Sagnac interferometer. The achievable signal-to-noise ratio is shown to be enhanced over that for a standard optical tweezers setup. The enha
A general quantum limit to the sensitivity of particle position measurements is derived following the simple principle of the Heisenberg microscope. The value of this limit is calculated for particles in the Rayleigh and Mie scattering regimes, and w
This paper reports on the excitation of surface plasmons on gold-coated nanofibre tips by side-illumination with a laser beam and the coupling of the surface plasmons to the optical fiber. The measurements show a strong dependence of the coupling eff