ﻻ يوجد ملخص باللغة العربية
A setup is proposed to enhance tracking of very small particles, by using optical tweezers embedded within a Sagnac interferometer. The achievable signal-to-noise ratio is shown to be enhanced over that for a standard optical tweezers setup. The enhancement factor increases asymptotically as the interferometer visibility approaches 100%, but is capped at a maximum given by the ratio of the trapping field intensity to the detector saturation threshold. For an achievable visibility of 99%, the signal-to-noise ratio is enhanced by a factor of 200, and the minimum trackable particle size is 2.4 times smaller than without the interferometer.
We demonstrate a lock-in particle tracking scheme in optical tweezers based on stroboscopic modulation of an illuminating optical field. This scheme is found to evade low frequency noise sources while otherwise producing an equivalent position measur
A general quantum limit to the sensitivity of particle position measurements is derived following the simple principle of the Heisenberg microscope. The value of this limit is calculated for particles in the Rayleigh and Mie scattering regimes, and w
Plasmonic optical tweezers are a ubiquitous tool for the precise manipulation of nanoparticles and biomolecules at low photon flux, while femtosecond-laser optical tweezers can probe the nonlinear optical properties of the trapped species with applic
We built an ultra low noise angle sensor by combining a folded optical lever and a Sagnac interferometer. The instrument has a measured noise floor of 1.3 prad / Hz^(1/2) at 2.4 kHz. We achieve this record angle sensitivity using a proof-of-concept a
We present experimental evidence of plasmonic-enhanced optical tweezers, of polystyrene beads in deionized water in the vicinity of metal-coated nanostructures. The optical tweezers operate with a continuous wave (CW) near-infrared laser. We employ a