ترغب بنشر مسار تعليمي؟ اضغط هنا

Intelligent thermal cloak-concentrators

70   0   0.0 ( 0 )
 نشر من قبل J. P. Huang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

How to macroscopically control the flow of heat at will is up to now a challenge, which, however, is very important for human life since heat flow is a ubiquitous phenomenon in nature. Inspired by intelligent electronic components or intelligent materials, here we demonstrate, analytically and numerically, a unique class of intelligent bifunctional thermal metamaterials called thermal cloak-concentrators, which can automatically change from a cloak (concentrator) to a concentrator (cloak) when the applied temperature field decreases (increases). For future experimental realization, the behavior is also confirmed by assembling homogeneous isotropic materials according to the effective medium theory. The underlying mechanism originates from the effect of nonlinearity in thermal conduction. This work not only makes it possible to achieve a switchable Seebeck effect, but also offers guidance both for macroscopic manipulation of heat flow at will and for the design of similar intelligent multifunctional metamaterials in optics, electromagnetics, acoustics, or elastodynamics.

قيم البحث

اقرأ أيضاً

117 - Baowen Li , Lei Wang , 2004
We report on the first model of a thermal transistor to control heat flow. Like its electronic counterpart, our thermal transistor is a three-terminal device with the important feature that the current through the two terminals can be controlled by s mall changes in the temperature or in the current through the third terminal. This control feature allows us to switch the device between off (insulating) and on (conducting) states or to amplify a small current. The thermal transistor model is possible because of the negative differential thermal resistance.
A kind of transformation media, which we shall call the anti-cloak, is proposed to partially defeat the cloaking effect of the invisibility cloak. An object with an outer shell of anti-cloak is visible to the outside if it is coated with the invisibl e cloak. Fourier-Bessel analysis confirms this finding by showing that external electromagnetic wave can penetrate into the interior of the invisibility cloak with the help of the anti-cloak.
195 - Mingfu Xue , Can He , Zhiyu Wu 2020
In this paper, we propose a novel physical stealth attack against the person detectors in real world. The proposed method generates an adversarial patch, and prints it on real clothes to make a three dimensional (3D) invisible cloak. Anyone wearing t he cloak can evade the detection of person detectors and achieve stealth. We consider the impacts of those 3D physical constraints (i.e., radian, wrinkle, occlusion, angle, etc.) on person stealth attacks, and propose 3D transformations to generate 3D invisible cloak. We launch the person stealth attacks in 3D physical space instead of 2D plane by printing the adversarial patches on real clothes under challenging and complex 3D physical scenarios. The conventional and 3D transformations are performed on the patch during its optimization process. Further, we study how to generate the optimal 3D invisible cloak. Specifically, we explore how to choose input images with specific shapes and colors to generate the optimal 3D invisible cloak. Besides, after successfully making the object detector misjudge the person as other objects, we explore how to make a person completely disappeared, i.e., the person will not be detected as any objects. Finally, we present a systematic evaluation framework to methodically evaluate the performance of the proposed attack in digital domain and physical world. Experimental results in various indoor and outdoor physical scenarios show that, the proposed person stealth attack method is robust and effective even under those complex and challenging physical conditions, such as the cloak is wrinkled, obscured, curved, and from different angles. The attack success rate in digital domain (Inria data set) is 86.56%, while the static and dynamic stealth attack performance in physical world is 100% and 77%, respectively, which are significantly better than existing works.
The progress of semiconductor electronics toward ever-smaller length scales and associated higher power densities brings a need for new high-resolution thermal microscopy techniques. Traditional thermal microscopy is performed by detecting infrared r adiation with far-field optics, where the resolution is limited by the wavelength of the light. By adopting a serial, local-probe approach, near-field and scanned-probe microscopies can surpass this limit but sacrifice imaging speed. In the same way that electron microscopy was invented to overcome the resolution limits of light microscopy, we here demonstrate a thermal imaging technique that uses an electron microscope to overcome the limits of infrared thermal microscopy, without compromising imaging speed. With this new technique, which we call electron thermal microscopy, temperature is resolved by detecting the liquid-solid transition of arrays of nanoscale islands, producing thermal maps in real-time (30 thermal images per second over a 16um^2 field-of-view). The experimental demonstration is supported by combined electrical and thermal modeling.
128 - Zhe Zhang , Kuo Li , Shangchao Lin 2021
Nowadays the world is facing a prominent paradox regarding thermal energy. The production of heat accounts for more than 50% of global final energy consumption while the waste heat potential analysis reveals that 72% of the global primary energy cons umption is lost after conversion mainly in the form of heat. Towards global decarbonization, it is of vital importance to establish a solution to thermal energy utilization under full control. Here, we propose and realize an unprecedented concept -- barocaloric thermal batteries based on the inverse colossal barocaloric effect of NH4SCN. Thermal charging is initialized upon pressurization through an order-to-disorder phase transition below 364 K and in turn the discharging of 43 J g-1, which are eleven times more than the input mechanical energy, occurs on demand at depressurization at lower temperatures. The discharging is also manifested as a directly measured temperature rise of 12 K. The thermodynamic equilibrium nature of the pressure-restrained heat-carrying phase guarantees stable storage and/or transport over a variety of temporal and/or spatial scales. The barocaloric thermal batteries reinforced by their solid microscopic mechanism are expected to significantly advance the ability to take advantage of waste heat.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا