ﻻ يوجد ملخص باللغة العربية
Nowadays the world is facing a prominent paradox regarding thermal energy. The production of heat accounts for more than 50% of global final energy consumption while the waste heat potential analysis reveals that 72% of the global primary energy consumption is lost after conversion mainly in the form of heat. Towards global decarbonization, it is of vital importance to establish a solution to thermal energy utilization under full control. Here, we propose and realize an unprecedented concept -- barocaloric thermal batteries based on the inverse colossal barocaloric effect of NH4SCN. Thermal charging is initialized upon pressurization through an order-to-disorder phase transition below 364 K and in turn the discharging of 43 J g-1, which are eleven times more than the input mechanical energy, occurs on demand at depressurization at lower temperatures. The discharging is also manifested as a directly measured temperature rise of 12 K. The thermodynamic equilibrium nature of the pressure-restrained heat-carrying phase guarantees stable storage and/or transport over a variety of temporal and/or spatial scales. The barocaloric thermal batteries reinforced by their solid microscopic mechanism are expected to significantly advance the ability to take advantage of waste heat.
We report on the first model of a thermal transistor to control heat flow. Like its electronic counterpart, our thermal transistor is a three-terminal device with the important feature that the current through the two terminals can be controlled by s
We present a DFT study utilizing the Hubbard U correction to probe structural and magnetic disorder in $mathrm{NaO_{2}}$, primary discharge product of Na-O$_2$ batteries. We show that $mathrm{NaO_{2}}$ exhibits a large degree of rotational and magnet
A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations. Here, we report that the crystalline solid AgCrSe2 has liquid-like thermal conduction. In this compound, Ag atoms exhi
We study the size dependence of thermal conductivity in nanoscale semiconducting systems. An analytical formula including the surface scattering and the size confinement effects of phonon transport is derived. The theoretical formula gives good agree
We study thermal rectifying effect in two dimensional (2D) systems consisting of the Frenkel Kontorva (FK) lattice and the Fermi-Pasta-Ulam (FPU) lattice. It is found that the rectifying effect is related to the asymmetrical interface thermal resista