ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic entropy production arising from nonstationary thermal transport

173   0   0.0 ( 0 )
 نشر من قبل Ian Ford
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute statistical properties of the stochastic entropy production associated with the nonstationary transport of heat through a system coupled to a time dependent nonisothermal heat bath. We study the 1-d stochastic evolution of a bound particle in such an environment by solving the appropriate Langevin equation numerically, and by using an approximate analytic solution to the Kramers equation to determine the behaviour of an ensemble of systems. We express the total stochastic entropy production in terms of a relaxational or nonadiabatic part together with two components of housekeeping entropy production and determine the distributions for each, demonstrating the importance of all three contributions for this system. We compare the results with an approximate analytic model of the mean behaviour and we further demonstrate that the total entropy production and the relaxational component approximately satisfy detailed fluctuation relations for certain time intervals. Finally, we comment on the resemblance between the procedure for solving the Kramers equation and a constrained extremisation, with respect to the probability density function, of the spatial density of the mean rate of production of stochastic entropy.



قيم البحث

اقرأ أيضاً

Computing the stochastic entropy production associated with the evolution of a stochastic dynamical system is a well-established problem. In a small number of cases such as the Ornstein-Uhlenbeck process, of which we give a complete exposition, the d istribution of entropy production can be obtained analytically, but in general it is much harder. A recent development in solving the Fokker-Planck equation, in which the solution is written as a product of positive functions, enables the distribution to be obtained approximately, with the assistance of simple numerical techniques. Using examples in one and higher dimension, we demonstrate how such a framework is very convenient for the computation of stochastic entropy production in diffusion processes.
The stochastic entropy generated during the evolution of a system interacting with an environment may be separated into three components, but only two of these have a non-negative mean. The third component of entropy production is associated with the relaxation of the system probability distribution towards a stationary state and with nonequilibrium constraints within the dynamics that break detailed balance. It exists when at least some of the coordinates of the system phase space change sign under time reversal, and when the stationary state is asymmetric in these coordinates. We illustrate the various components of entropy production, both in detail for particular trajectories and in the mean, using simple systems defined on a discrete phase space of spatial and velocity coordinates. These models capture features of the drift and diffusion of a particle in a physical system, including the processes of injection and removal and the effect of a temperature gradient. The examples demonstrate how entropy production in stochastic thermodynamics depends on the detail that is included in a model of the dynamics of a process. Entropy production from such a perspective is a measure of the failure of such models to meet Loschmidts expectation of dynamic reversibility.
We consider a system of two Brownian particles (say A and B), coupled to each other via harmonic potential of stiffness constant $k$. Particle-A is connected to two heat baths of constant temperatures $T_1$ and $T_2$, and particle-B is connected to a single heat bath of a constant temperature $T_3$. In the steady state, the total entropy production for both particles obeys the fluctuation theorem. We compute the total entropy production due to one of the particles called as partial or apparent entropy production, in the steady state for a time segment $tau$. When both particles are weakly interacting with each other, the fluctuation theorem for partial and apparent entropy production is studied. We find a significant deviation from the fluctuation theorem. The analytical results are also verified using numerical simulations.
We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical re action systems based on a master equation defined on the space of microscopic chemical states, and on appropriate definitions of entropy and entropy production, The system is in contact with a heat reservoir, and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlogl reaction models.
We investigate the microscopic features of bosonic quantum transport in a non-equilibrium steady state, which breaks time reversal invariance spontaneously. The analysis is based on the probability distributions, generated by the correlation function s of the particle current and the entropy production operator. The general approach is applied to an exactly solvable model with a point-like interaction driving the system away from equilibrium. The quantum fluctuations of the particle current and the entropy production are explicitly evaluated in the zero frequency limit. It is shown that all moments of the entropy production distribution are non-negative, which provides a microscopic version of the second law of thermodynamics. On this basis a concept of efficiency, taking into account all quantum fluctuations, is proposed and analysed. The role of the quantum statistics in this context is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا