ﻻ يوجد ملخص باللغة العربية
We investigate the microscopic features of bosonic quantum transport in a non-equilibrium steady state, which breaks time reversal invariance spontaneously. The analysis is based on the probability distributions, generated by the correlation functions of the particle current and the entropy production operator. The general approach is applied to an exactly solvable model with a point-like interaction driving the system away from equilibrium. The quantum fluctuations of the particle current and the entropy production are explicitly evaluated in the zero frequency limit. It is shown that all moments of the entropy production distribution are non-negative, which provides a microscopic version of the second law of thermodynamics. On this basis a concept of efficiency, taking into account all quantum fluctuations, is proposed and analysed. The role of the quantum statistics in this context is also discussed.
For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the in
The quantum fluctuations of the entropy production for fermionic systems in the Landauer-Buttiker non-equilibrium steady state are investigated. The probability distribution, governing these fluctuations, is explicitly derived by means of quantum fie
We consider a system of two Brownian particles (say A and B), coupled to each other via harmonic potential of stiffness constant $k$. Particle-A is connected to two heat baths of constant temperatures $T_1$ and $T_2$, and particle-B is connected to a
We consider bosonic transport through one-dimensional spin systems. Transport is induced by coupling the spin systems to bosonic reservoirs kept at different temperatures. In the limit of weak-coupling between spins and bosons we apply the quantum-op
We compute statistical properties of the stochastic entropy production associated with the nonstationary transport of heat through a system coupled to a time dependent nonisothermal heat bath. We study the 1-d stochastic evolution of a bound particle