ترغب بنشر مسار تعليمي؟ اضغط هنا

Microscopic Features of Bosonic Quantum Transport and Entropy Production

61   0   0.0 ( 0 )
 نشر من قبل Mihail Mintchev
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the microscopic features of bosonic quantum transport in a non-equilibrium steady state, which breaks time reversal invariance spontaneously. The analysis is based on the probability distributions, generated by the correlation functions of the particle current and the entropy production operator. The general approach is applied to an exactly solvable model with a point-like interaction driving the system away from equilibrium. The quantum fluctuations of the particle current and the entropy production are explicitly evaluated in the zero frequency limit. It is shown that all moments of the entropy production distribution are non-negative, which provides a microscopic version of the second law of thermodynamics. On this basis a concept of efficiency, taking into account all quantum fluctuations, is proposed and analysed. The role of the quantum statistics in this context is also discussed.



قيم البحث

اقرأ أيضاً

For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the in stantaneous steady entropy production rate and the excess entropy production. We propose to define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess entropy production is given by a line integral in the control parameter space and its integrand is called the Berry-Sinitsyn-Nemenman (BSN) vector. In the weakly nonequilibrium regime, we show that BSN vector is described by $ln breve{rho}_0$ and $rho_0$ where $rho_0$ is the instantaneous steady state of the QME and $breve{rho}_0$ is that of the QME which is given by reversing the sign of the Lamb shift term. If the system Hamiltonian is non-degenerate or the Lamb shift term is negligible, the excess entropy production approximately reduces to the difference between the von Neumann entropies of the system. Additionally, we point out that the expression of the entropy production obtained in the classical Markov jump process is different from our result and show that these are approximately equivalent only in the weakly nonequilibrium regime.
The quantum fluctuations of the entropy production for fermionic systems in the Landauer-Buttiker non-equilibrium steady state are investigated. The probability distribution, governing these fluctuations, is explicitly derived by means of quantum fie ld theory methods and analysed in the zero frequency limit. It turns out that microscopic processes with positive, vanishing and negative entropy production occur in the system with non-vanishing probability. In spite of this fact, we show that all odd moments (in particular, the mean value of the entropy production) of the above distribution are non-negative. This result extends the second principle of thermodynamics to the quantum fluctuations of the entropy production in the Landauer-Buttiker state. The impact of the time reversal is also discussed.
We consider a system of two Brownian particles (say A and B), coupled to each other via harmonic potential of stiffness constant $k$. Particle-A is connected to two heat baths of constant temperatures $T_1$ and $T_2$, and particle-B is connected to a single heat bath of a constant temperature $T_3$. In the steady state, the total entropy production for both particles obeys the fluctuation theorem. We compute the total entropy production due to one of the particles called as partial or apparent entropy production, in the steady state for a time segment $tau$. When both particles are weakly interacting with each other, the fluctuation theorem for partial and apparent entropy production is studied. We find a significant deviation from the fluctuation theorem. The analytical results are also verified using numerical simulations.
We consider bosonic transport through one-dimensional spin systems. Transport is induced by coupling the spin systems to bosonic reservoirs kept at different temperatures. In the limit of weak-coupling between spins and bosons we apply the quantum-op tical master equation to calculate the energy transmitted from source to drain reservoirs. At large thermal bias, we find that the current for longitudinal transport becomes independent of the chain length and is also not drastically affected by the presence of disorder. In contrast, at small temperatures, the current scales inversely with the chain length and is further suppressed in presence of disorder. We also find that the critical behaviour of the ground state is mapped to critical behaviour of the current -- even in configurations with infinite thermal bias.
We compute statistical properties of the stochastic entropy production associated with the nonstationary transport of heat through a system coupled to a time dependent nonisothermal heat bath. We study the 1-d stochastic evolution of a bound particle in such an environment by solving the appropriate Langevin equation numerically, and by using an approximate analytic solution to the Kramers equation to determine the behaviour of an ensemble of systems. We express the total stochastic entropy production in terms of a relaxational or nonadiabatic part together with two components of housekeeping entropy production and determine the distributions for each, demonstrating the importance of all three contributions for this system. We compare the results with an approximate analytic model of the mean behaviour and we further demonstrate that the total entropy production and the relaxational component approximately satisfy detailed fluctuation relations for certain time intervals. Finally, we comment on the resemblance between the procedure for solving the Kramers equation and a constrained extremisation, with respect to the probability density function, of the spatial density of the mean rate of production of stochastic entropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا