ﻻ يوجد ملخص باللغة العربية
The stochastic entropy generated during the evolution of a system interacting with an environment may be separated into three components, but only two of these have a non-negative mean. The third component of entropy production is associated with the relaxation of the system probability distribution towards a stationary state and with nonequilibrium constraints within the dynamics that break detailed balance. It exists when at least some of the coordinates of the system phase space change sign under time reversal, and when the stationary state is asymmetric in these coordinates. We illustrate the various components of entropy production, both in detail for particular trajectories and in the mean, using simple systems defined on a discrete phase space of spatial and velocity coordinates. These models capture features of the drift and diffusion of a particle in a physical system, including the processes of injection and removal and the effect of a temperature gradient. The examples demonstrate how entropy production in stochastic thermodynamics depends on the detail that is included in a model of the dynamics of a process. Entropy production from such a perspective is a measure of the failure of such models to meet Loschmidts expectation of dynamic reversibility.
The total entropy production and its three constituent components are described both as fluctuating trajectory-dependent quantities and as averaged contributions in the context of the continuous Markovian dynamics, described by stochastic differentia
We compute statistical properties of the stochastic entropy production associated with the nonstationary transport of heat through a system coupled to a time dependent nonisothermal heat bath. We study the 1-d stochastic evolution of a bound particle
Computing the stochastic entropy production associated with the evolution of a stochastic dynamical system is a well-established problem. In a small number of cases such as the Ornstein-Uhlenbeck process, of which we give a complete exposition, the d
The existence of the typical set is key for the consistence of the ensemble formalization of statistical mechanics. We demonstrate here that the typical set can be defined and characterized for a general class of stochastic processes. This includes p
Systems out of equilibrium exhibit a net production of entropy. We study the dynamics of a stochastic system represented by a Master Equation that can be modeled by a Fokker-Planck equation in a coarse-grained, mesoscopic description. We show that th