ﻻ يوجد ملخص باللغة العربية
Context. Astrophysical jets are ubiquitous in the Universe on all scales, but their large-scale dynamics and evolution in time are hard to observe since they usually develop at a very slow pace. Aims. We aim to obtain the first observational proof of the expected large-scale evolution and interaction with the environment in an astrophysical jet. Only jets from microquasars offer a chance to witness the real-time, full-jet evolution within a human lifetime, since they combine a short, few parsec length with relativistic velocities. Methods. The methodology of this work is based on a systematic recalibraton of interferometric radio observations of microquasars available in public archives. In particular, radio observations of the microquasar GRS 1758-258 over less than two decades have provided the most striking results. Results. Significant morphological variations in the extended jet structure of GRS 1758-258 are reported here that were previously missed. Its northern radio lobe underwent a major morphological variation that rendered the hotspot undetectable in 2001 and reappeared again in the following years. The reported changes confirm the Galactic nature of the source. We tentatively interpret them in terms of the growth of instabilities in the jet flow. There is also evidence of surrounding cocoon. These results can provide a testbed for models accounting for the evolution of jets and their interaction with the environment.
In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales - even if the primordial metric perturbation is
Pre-trained large-scale language models have increasingly demonstrated high accuracy on many natural language processing (NLP) tasks. However, the limited weight storage and computational speed on hardware platforms have impeded the popularity of pre
We explore energy densities of magnetic field and relativistic electrons in the M87 jet. Since the radio core at the jet base is identical to the optically thick surface against synchrotron self absorption (SSA), the observing frequency is identical
We present an in-depth study of the large-scale, western jet of the microquasar XTE J1550-564, based on X-ray and radio observations performed in 2002-2003. The jet is spatially resolved in both observing windows. The X-ray jet is expanding in time a
4C +49.22 is a gamma-ray flat spectrum radio quasar with a bright and knotty jet. We investigate the properties of the core and large-scale knots by using their spectral energy distributions (SEDs). Analyzing its Fermi/LAT data in the past 8 years, a