ﻻ يوجد ملخص باللغة العربية
4C +49.22 is a gamma-ray flat spectrum radio quasar with a bright and knotty jet. We investigate the properties of the core and large-scale knots by using their spectral energy distributions (SEDs). Analyzing its Fermi/LAT data in the past 8 years, a long-term steady gamma-ray emission component is found besides bright outbursts. For the core region, the gamma-ray emission together with the simultaneous emission in the low-energy bands at different epochs is explained with the single-zone leptonic model. The derived magnetization parameters and radiation efficiencies of the radio-core jet decrease as gamma-ray flux decays, likely indicating that a large part of the magnetic energy is converted to the kinetic energy of particles in pc-scale. For the large-scale knots, their radio-optical-X-ray SEDs can be reproduced with the leptonic model by considering the inverse Compton scattering of cosmic microwave background photons. The sum of the predicted gamma-ray fluxes of these knots is comparable to that observed with LAT at 10^{24} Hz of the steady gamma-ray component, indicating that the steady gamma-ray emission may be partially contributed by these large-scale knots. This may conceal the flux variations of the low-level gamma-ray emission from the radio-core. The derived bulk Lorentz factors of the knots decrease along the distance to the core, illustrating as deceleration of jet in large-scale. The powers of the core and knots are roughly in the same order, but the jet changes from highly magnetized at the core region into particle-dominated at the large-scale knots.
A comprehensively theoretical analysis on the broadband spectral energy distributions (SEDs) of large-scale jet knots in 3C 273 is presented for revealing their X-ray radiation mechanism. We show that these SEDs cannot be explained with a single elec
The object 4C 71.07 is a high-redshift blazar whose spectral energy distribution shows a prominent big blue bump and a strong Compton dominance. We present the results of a two-year multiwavelength campaign led by the Whole Earth Blazar Telescope (WE
The Large Area Telescope on board the Fermi Gamma-ray Space Telescope detected a strong gamma-ray flare on 2011 May 15 from a source identified as 4C 49.22, a flat spectrum radio quasar also known as S4 1150+49. This blazar, characterised by a promin
We present the first LOFAR observations of the radio jet in the quasar 4C+19.44 (a.k.a. PKS 1354+19) obtained with the long baselines. The achieved resolution is very well matched to that of archival Jansky Very Large Array (JVLA) observations at hig
Context. Astrophysical jets are ubiquitous in the Universe on all scales, but their large-scale dynamics and evolution in time are hard to observe since they usually develop at a very slow pace. Aims. We aim to obtain the first observational proof