ﻻ يوجد ملخص باللغة العربية
Pre-trained large-scale language models have increasingly demonstrated high accuracy on many natural language processing (NLP) tasks. However, the limited weight storage and computational speed on hardware platforms have impeded the popularity of pre-trained models, especially in the era of edge computing. In this paper, we seek to find the best model structure of BERT for a given computation size to match specific devices. We propose the first compiler-aware neural architecture optimization framework. Our framework can guarantee the identified model to meet both resource and real-time specifications of mobile devices, thus achieving real-time execution of large transformer-based models like BERT variants. We evaluate our model on several NLP tasks, achieving competitive results on well-known benchmarks with lower latency on mobile devices. Specifically, our model is 5.2x faster on CPU and 4.1x faster on GPU with 0.5-2% accuracy loss compared with BERT-base. Our overall framework achieves up to 7.8x speedup compared with TensorFlow-Lite with only minor accuracy loss.
We investigate multi-scale transformer language models that learn representations of text at multiple scales, and present three different architectures that have an inductive bias to handle the hierarchical nature of language. Experiments on large-sc
Large-scale language models have recently demonstrated impressive empirical performance. Nevertheless, the improved results are attained at the price of bigger models, more power consumption, and slower inference, which hinder their applicability to
Mobile devices are becoming an important carrier for deep learning tasks, as they are being equipped with powerful, high-end mobile CPUs and GPUs. However, it is still a challenging task to execute 3D Convolutional Neural Networks (CNNs) targeting fo
Large-scale language models such as GPT-3 are excellent few-shot learners, allowing them to be controlled via natural text prompts. Recent studies report that prompt-based direct classification eliminates the need for fine-tuning but lacks data and i
In recent years, the size of pre-trained language models (PLMs) has grown by leaps and bounds. However, efficiency issues of these large-scale PLMs limit their utilization in real-world scenarios. We present a suite of cost-effective techniques for t