ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of entangled photon strings using NV centers in diamond

305   0   0.0 ( 0 )
 نشر من قبل Dasari Durga Bhaktavatsala Rao
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a scheme to generate entangled photons using the NV centers in diamond. We show how the long-lived nuclear spin in diamond can mediate entanglement between multiple photons thereby increasing the length of entangled photon string. With the proposed scheme one could generate both n-photon GHZ and cluster states. We present an experimental scheme realizing the same and estimating the rate of entanglement generation both in the presence and absence of a cavity.



قيم البحث

اقرأ أيضاً

Initializing quantum registers with high fidelity is a fundamental precondition for many applications like quantum information processing and sensing. The electronic and nuclear spins of a Nitrogen-Vacancy (NV) center in diamond form an interesting h ybrid quantum register that can be initialized by a combination of laser, microwave, and radio-frequency pulses. However, the laser illumination, which is necessary for achieving electron spin polarization, also has the unwanted side-effect of depolarizing the nuclear spin. Here, we study how the depolarization dynamics of the $^{14}$N nuclear spin depends on the laser wavelength. We show experimentally that excitation with an orange laser (594 nm) causes significantly less nuclear spin depolarization compared to the green laser (532 nm) typically used for excitation and hence leads to higher nuclear spin polarization. This could be because orange light excitation inhibits ionization of NV$^{0}$ into NV$^{-}$ and therefore suppresses one source of noise acting on the nuclear spin.
221 - Nanyang Xu , Yu Tian , Bing Chen 2018
Nuclear spins nearby nitrogen-vacancy (NV) centers in diamond are excellent quantum memory for quantum computing and quantum sensing, but are difficult to be initialized due to their weak interactions with the environment. Here we propose and demonst rate a magnetic-field-independent, deterministic and highly efficient polarization scheme by introducing chopped laser pulses into the double-resonance initialization method. With this method, we demonstrate initialization of single-nuclear-spin approaching $98.1%$ and a $^{14}N$-$^{13}C$ double-nuclear-spin system approaching $96.8%$ at room temperature. The initialization is limited by a nuclear-spin depolarization effect due to chopped laser excitation. Our approach could be extended to NV systems with more nuclear spins and would be a useful tool in future applications such as nano-MRI and single-cell NMR.
We investigated the depth dependence of coherence times of nitrogen-vacancy (NV) centers through precisely depth controlling by a moderately oxidative at 580{deg}C in air. By successive nanoscale etching, NV centers could be brought close to the diam ond surface step by step, which enable us to trace the evolution of the number of NV centers remained in the chip and to study the depth dependence of coherence times of NV centers with the diamond etching. Our results showed that the coherence times of NV centers declined rapidly with the depth reduction in their last about 22 nm before they finally disappeared, revealing a critical depth for the influence of rapid fluctuating surface spin bath. By monitoring the coherence time variation with depth, we could make a shallow NV center with long coherence time for detecting external spins with high sensitivity.
Hybrid quantum registers consisting of different types of qubits offer a range of advantages as well as challenges. The main challenge is that some types of qubits react only slowly to external control fields, thus considerably slowing down the infor mation processing operations. One promising approach that has been tested in a number of cases is to use indirect control, where external fields are applied only to qubits that interact strongly with resonant excitation pulses. Here we use this approach to indirectly control the nuclear spins of an NV center, using microwave pulses to drive the electron spin, combined with free precession periods optimized for generating logical gate operations on the nuclear spins. The scheme provides universal control and we present two typical applications: polarizing the nuclear spin and measuring nuclear spin free induction decay signals, both without applying radio-frequency pulses. This scheme is versatile as it can be implemented over a wide range of magnetic field strengths and at any temperature.
High-fidelity projective readout of a qubits state in a single experimental repetition is a prerequisite for various quantum protocols of sensing and computing. Achieving single-shot readout is challenging for solid-state qubits. For Nitrogen-Vacancy (NV) centers in diamond, it has been realized using nuclear memories or resonant excitation at cryogenic temperature. All of these existing approaches have stringent experimental demands. In particular, they require a high efficiency of photon collection, such as immersion optics or all-diamond micro-optics. For some of the most relevant applications, such as shallow implanted NV centers in a cryogenic environment, these tools are unavailable. Here we demonstrate an all-optical spin readout scheme that achieves single-shot fidelity even if photon collection is poor (delivering less than 10$^3$ clicks/second). The scheme is based on spin-dependent resonant excitation at cryogenic temperature combined with spin-to-charge conversion, mapping the fragile electron spin states to the stable charge states. We prove this technique to work on shallow implanted NV centers as they are required for sensing and scalable NV-based quantum registers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا